http://www.mindmeters.com/showlog.asp?log_id=4276
李翔:饥饿之国的崛起
2006年度金融时报、高盛最佳商业书籍获奖者
一个英国记者眼中的中国崛起,来自外部的真实之声,不同于喧嚣的中国崛起论和中国威胁论
他试图去理解中国所发生的巨大变化
他从外部了解到中国崛起带给世界的震撼,又试图从内部去理解这个国家的改革之道以及巨人前行中的矛盾和痛苦
饥饿之国的崛起
李翔 文
一 危险的中国叙述
每次金奇(James Kynge)坐上北京的出租车,如果司机是一位老北京,他总会感到一阵愉悦。他喜欢他们说话的腔调和他们恣意的议论。这些老北京人喜欢在词语的后面加上“儿”。他跟他们学会了不少中国的谚语,比如“肉包子打狗”,司机用这个词语来比喻对政府的徒劳的抗议;再比如,藕断丝连。金奇会很认真地将这些词语写下来。
他1982年时就已经作为一名学生到中国来了,不过那时候他不在北京,他去的是山东大学,对于这位英国人来说,这也未尝不好,中国最伟大的哲学家孔子出生在山东,那条伟大的河流黄河流经山东。
再次来到中国时,他已经是英国《金融时报》的驻华记者了,他以这个身份在中国渡过了将近十年,目睹了他所说的“饥饿之国的崛起”。
写一本关于中国的书颇具危险性。存在着关于写一本讲中国的书的大量笑谈。一个著名的说法是,当你在中国呆上一周,你会觉得你能写一本书;呆上一个月,你觉得自己可以写一篇关于中国的文章;呆了一年之后,你会发现自己最好闭嘴。彼得·德鲁克讲述过一个异曲同工的故事:“一个年轻人打算写一本关于中国的权威性著作,他作了充分的准备,研究了有关这一课题的所有资料,并准备学习中文。作为一名中国问题专家,他声名日盛。出版商和他签了一份条件优厚的合同,并且给了他一大笔预付款。在一个天气晴朗的早晨,他到了上海。他访问了别人推荐给他的在中国问题上颇有见地的人,度过了愉快的一天。无论走到哪里,他都受到了盛情款待。深夜,他回到旅馆,却无法入睡。他的脑海中充斥着各种各样的想法。最后,在黎明前夕,他起身下床匆匆记下了其中一小部分。12小时后,当他从书桌上抬起头时,他已经写出一份最全面、最漂亮的提纲;只要再把他脑海中闪现的想法记录下来,这本书就完成了。他需要的只是关于一些次要问题的一点不太重要的数据。‘好啦,’这个年轻人一边浏览他的提纲,一边自言自语,‘晚一天也不会有什么关系;明天我不妨收集一些数据,那么以后动笔时思路就不会被打断了’。那时是46年前;最近我听说这个年轻人——现在已经上了年纪——还在寻找一点不太重要的详细资料和数据。”
可是,金奇在中国已经呆了不止一年,迄今为止,他记者生涯的一半以上时间都是在中国度过。或许他可以给出一些不同见解?
二 奇妙的中国感觉
尽管中国已经和马嘎尔尼勋爵到来时的中国不同——傲慢的乾隆帝拒绝了这位英国人所代表的帝国的示好与贸易要求;它和金奇1982年时所看到的中国也大不一样了,那时中国刚刚打开大门没有多久。金奇能记得清楚1980年代中国人是如何表示对外国人的友好的。它们的情节大致相同,粗心的外国客人在离开的时候,把某样小物品遗忘在宾馆,好客本地人驾车追赶客人所搭乘的出租车或大巴,把东西交给感激涕零的客人。
他知道,中国人把同外国人打交道称为“外事”。外事发展到后来,就是对外国客人的夹道欢迎。当英特尔的CEO 克雷格·贝瑞特访问北京时,道路两旁欢迎的民众有节奏的高呼“in-te-er,in-te-er”,让这位商人感觉自己是某位摇滚明星。这种待遇后来不少来华访问和投资的外国政要与商人们都享受过。
但是,尽管中国人处处在刻意表示对外国人的友善,金奇却认为他们对外国人的看法并为改变。而且,从李鸿章时代就一直未改变,那就是“内外有别”。从他自己的经历来看,出租车上,电台播放的相声中会有嘲笑外国人的段子,友好的出租车司机会跟着发笑。北约的飞机炸了中国南斯拉发大使馆,愤怒的中国人走上街头,金奇认为这是政府的事情,跟他并无多大关系,因此照旧前去采访。有人问他,你是哪里人。他回答:英国。他周围的中国人突然都静了下来,然后远离他。有人开始咒骂“英国猪”,“英国狗”,“英国走狗”。整个人群开始咒骂:“英国猪、英国狗、英国走狗!”金奇感觉到事情有些不妙,急忙要离开,人们开始踢他、推他、撞他。他挣脱人群,开始拼命跑,但是投掷的石头还是击中了他的双腿和左肩,紧随身后的还有大声咒骂。
三 不受尊敬的崛起
我们必须首先了解金奇对中国的奇妙感情,才能够理解他的这本书《中国震撼世界:饥饿之国的崛起》。这个他很早就开始试图去了解的国度,正在以非比寻常的发展速度赢取整个世界的注意。
可是在他看来,这个国家的崛起,赢得的仅仅是注意,而不是尊敬。这个国家充满了很多令他和他的同胞们无法理解的事情,它是一个告诉发展的矛盾体,内部实在称不上完美。但是飞速的旋转让人眼花缭乱,无暇去注意它的内部结构。他为他所碰到的事情困惑不已,但是英国式的幽默激励他去把这些写出来。
一个收购了德国大钢铁厂ThyssenKrupp的中国钢铁巨人,却一直在千方百计拒绝他的采访。他联系的沙钢工作人员吴以各种借口拒绝他的前往,比如,沙钢的所在地锦丰交通不便,没有好的宾馆。推托不过时,吴让他发传真过去,他发过去传真,然后是漫长且杳无音信的等待——这对于中国记者来说极为常见。如是往复,这个英国记者决定径直前往。他真的如愿见到了沙钢的领导者沈文荣。吴带他参观了沙钢。临走时,吴对他说,下次来之前,一定要发个传真。
中国的小商品之乡义乌,充斥着世界各种名牌商品的仿制品,人们可以令人匪夷所思的价格买到自己想要的品牌商品。与此同时,在义乌的街道上张贴着打击假冒伪劣商品的告示,上面还留有电话号码。只有像金奇这样天真或者说想要弄个究竟的西方人才会去拨打这个号码。他拨打了这个电话,然后对方告诉他他打错了,应该拨打另外一个,无论他如何辩解。好的,那就打下一个号码,然后接电话的人告诉他这事情不归本部门管,告诉他另外一个电话号码。最后,他记下了数个电话号码,可是没有解答他心中的任何疑问,同样富有幽默感的是,最后一个电话号码又回到了开头他所拨打的那个号码,接电话的人告诉他,应该拨打这个他最初拨打的号码,去解决他所碰到的造假问题。
这种中国式智慧让他颇为无奈。但是这种智慧的产物却是惊人的。这些思维奇怪的中国人让一家中国钢铁厂收购了一家德国的老牌钢铁厂,让上万人失业,因为工作机会被转移到了中国;他们把廉价的商品销往全世界,让意大利传统制衣小城的制衣业面临危机。总的来说,全世界的制造业都在这个国家的崛起面前颤抖。
在意大利通往瑞士的火车上,他碰到的两个中国制造商关于欧洲的议论让他颇为惊奇。一个中国人注视火车窗外的风景说,外国人喜欢让他们的居住环境风景如画。他的老板沉思片刻,反问道:风景和工业,哪个更重要?他和金奇就如下问题交换看法:为什么外国人这么懒惰?欧洲没有了工业将会怎样?难道经济可以仅仅依靠服务业运转?欧洲农场的牛真的每天要消费两英镑?欧盟有什么存在的必要?这位中国老板对金奇说:“如果中国把注意力从发展经济转移到搞政治上,中国就完了。玩政治是一个国家所能发生的最糟糕的情形。”
在美国、在德国、在意大利、在瑞士,他所到的地方,都留下了中国的痕迹。即使没有中国人在那里生活,当地的沃尔玛也会摆满中国制造的廉价商品。他们失去了就业机会,换回来廉价商品。人们对中国带给他们的这种影响并不感激。金奇站在Rockford的沃尔玛门外,询问前来购物的人们,他们会不会对那些让货物变得廉价的中国工人们说谢谢,只有一两个人说他们会表示感谢,其他人或是困惑不解,或是径直走开。
而从事制造业的人则对认为自己受到了中国所施加的不公平竞争:中国的人民币币值被低估;中国工厂付给他们的工人工资过于低廉且很少福利;中国没有独立的工会让这些工人们可以同老板讨价还价;中国的国有金融体系为中国国有企业提供了廉价的金融支持;中央政府对出口企业进行税收优惠;中国企业不用对环境负责;中国企业盗用外国公司的知识产权;中国的水、电等成本都被低估……总而言之,这不是一场公平的竞争,对手过于无所顾忌和肆无忌惮。
四 饥饿的大国
而这是个真正的“饥饿之国”。它发展的越快,它所需要攫取的就越多。
制造业的外包让这个国家变成世界制造业之乡,可是日益严重的污染也让它成为世界的垃圾桶。世界银行列出的全世界污染最严重的二十个国家名单中,中国位于第十六。Josef Pacyna,一位美国的环境专家声称,全世界四分之一的非自然贡排放量来自中国。
中国对原木和纸浆的巨大需要对世界森林体系毁坏尤甚。印度尼西亚到中非的热带雨林被称为地球之肺,但为了满足中国的需求,它们正在高比例的消逝。在俄罗斯,砍伐木材所需获取的许可非常难以得到,除非这片森林发生火灾。于是人们故意纵火,取得政府许可,然后砍伐原木出口到中国。这些木材变成了北京、上海、广州、深圳那些新兴中产阶级的木地板。
中国还需要在全世界范围内去寻找石油。这是中海油试图去收购美国石油公司尤尼克的一个原因。令美国和它的欧洲盟友深感难过的是,为了获取石油,中国政府和一些非洲独裁者保持了良好关系,并且和伊朗持有一种暧昧关系。金奇以一位西方人的眼光为此忧心忡忡,他甚至还提到了一位中国将军朱成武所发表的过激言论,这位将军声称,如果美国袭击了中国领土,他认为中国应该实施核报复,中国准备牺牲西安以东的城市,而美国的大多城市也要被中国毁灭。
这个高速发展的国家本身也矛盾重重。孟子所提倡的“仁”正在被抛弃,人们之间的信任正在被破坏,所有事物,包括一个人的身份、学历都可以被买卖;商业利益让人无所顾忌,在安徽的劣质奶粉事件和河南卖血产生的艾滋病流行事件中,很多政府官员卷入其中;上市公司充满欺诈——他举了郑百文的例子;城市内部开始等级分明,这从汽车的车牌就可以看出;一些人的私有财产得不到保障,比如他所提到的陕西小油井的私人所有者;司法并不独立,政府往往可以影响到法庭的判决,他提到,中国汽车公司奇瑞声称,就让那些告它侵权的人到芜湖来和奇瑞公司对簿公堂吧,看看到底谁会赢。
为了摆脱中国制造的质量低劣形象以及中国公司无法创造出世界品牌的困困境,中国政府和中国公司以巨大的市场作为诱饵和交换条件来诱使跨国公司做出技术转让;雄心勃勃的中国公司开始收购一些知名的国外公司,比如,联想收购了IBM的电脑业务,TCL收购了欧洲的汤姆逊,海尔也做出了类似的尝试。可是正如金奇所说,这些公司所收购的公司或项目在西方不是正在衰落,就是那些西方公司本身就像摆脱的问题。中国公司想像上世纪的日本公司一样,通过收购和在西方建立工厂来建立强大的公司形象,但却总是不大顺利。
这个饥饿之国对能源、技术和品牌都存在着全球性的饥渴,而如何满足这个国家,将成为全世界的问题。它的廉价商品和它对全世界能源、技术与品牌的需求,同样都在震颤着整个世界。
五 成功的努力
金奇在全世界旅行去观察中国带给世界的影响;他又在中国各地旅行去试图了解这个震撼世界的国家。当我读完这本书的前三分之一时,我认为他对中国毫无洞见,只是在重复着西方观察家们对中国的判断:它的崛起将是本世纪最重大命题;它的廉价制造业将会给西方的制造业带来毁灭性打击,减少当地的就业机会;它依靠对知识产权的蔑视来发展自己的工业。同时他发明一些惊人之语,比如将重庆的发展比做19世纪芝加哥的发展,正如芝加哥的崛起带动了整个美国西部的繁荣一样,重庆也会起到类似的作用。
而当我耐下心来去将整本书读完时,我惊讶的发现这个西方记者对中国拥有某种令人惊叹的洞察力,并且具有一种大多数中国观察家所缺乏的耐心和描述能力。他能将一个高速发展中的矛盾的巨人通过200多页的篇幅完美的描述出来,让生活在这个国家的人也不觉得他是在重复一些显而易见的事实。
他没有仅仅停留在对这个国家的巨大市场、它过于迅速的发展速度、它巨大的人口和大城市的平坦程度的惊叹和赞美上。从他和曹思源的对话开始,他就开始试图去深入这个国家,曹对他说,中国的问题是“改革太快就乱,改革太慢就死”。从这本书看来,他的这种努力并没有虚掷。
2006年12月26日星期二
Three essays from mindmeters.com
http://www.mindmeters.com/showlog.asp?log_id=4268
黄一琨:这就是问题
这几年,关于国有资产的问题,吵得七荤八素的,听说最近那个叫巩什么的无耻之尤又在聒噪了,丫挺的有本事就别让北大逼着学生上自己的课,自己不逼着北大开课。
国有资产能不能管好,理论实践证明了太多次了。这次财经又提供了中国式的实情,问题已经太明白不过了,还有弄不明白的,我建议大家就别争了,各自洗洗睡。
在金融资本的管理问题上,除了模式的选择,还有一个敏感的话题,即人事管理。
在2003年的机构改革中,金融机构的“人事权”,实际从金融工委转移到各监管当局,“代管党的组织关系”。对此,外界一直有所担忧,认为可能会损害监管部门的独立性。
事实上,无论是组织部门、国资委或拟议中的金融国有资本出资人机构,作为国家股东和利益的代表,完全可以在股份制改造完毕的国有企业里,只管向董事会派出并考核董事,通过董事会来完成“管人管事管资产”的市场化转换。
中国国际金融公司经济学家哈继铭表示,从国际经验看,金融资产的管理不应与政府发生直接关系,投资的方针、重大战略决策毫无疑问需要政府参与把关,但是高管人事任免最好远离政府,而应该多一些专业人士参与。目前,大型国有金融企业主要高管的任免,仍由组织部门直接任命。现在四大行虽号称取消了行政级别,但总行行长、副行长、身为党员的行长助理,实际还受行政级别的管理,整个经营班子等于仍是组织部门在主导。
“经营层面的高管人事一旦由组织部门来管,很多事情都异化了,股东的约束力就消失了。”一位金融专家表示。
“中管干部”的背景来自1999年十五届四中全会的决议,其中包括在企业中仍要强调党委领导。
据国资委党建工作局有关负责人向《财经》记者介绍,53家特大型央企“一把手”、党委书记、董事长、总经理由中央任命,由中组部进行考核,企业领导人员管理一局协助工作,这53家央企的副职由党建工作局(党委组织部)考核和任命;企业领导人员管理二局负责53家之外的央企领导班子成员,包括党委书记、党委副书记、董事长、总经理、副总经理、纪委书记及总会计师;下属上市公司的高管,有控股公司的由控股公司管理,有董事会的由董事会管理,央企主要负责人有的和上市公司有交叉。
不过,国资委毕竟获得了53家大型央企副职和其余108家央企高管层的人事权,这是一个重大的变化。“现在国资委工作有点成效,关键在于抓到了人事权。”财政部一位官员称,“企业一把手都要亲自跑国资委,因为涉及考核,年终奖励、定级、向国务院汇报。”
“这是政治标准和市场化如何结合的问题。”《财经》首席研究员陆磊认为:“人事权在官本位体系中被看做是最大的权力,也是能代表所有者权益的最重要的权力。如果股东不是经过董事会履行这一权力,所谓完善法人治理最终会如同竹篮打水。”
http://www.mindmeters.com/showlog.asp?log_id=4263
史彦:广州的平安夜
平安夜不平安,李翔写的书评被毙,金奇写的那本《中国震撼世界:饥饿之国的崛起》内容不算耸人听闻,那些细节放在任何一个都市报里相信都无法吸引足够的收视率,但在东企,确实不行。广州之行每月一次,从没留有任何好的记忆,不单彻夜加班痛苦不堪,还要时时忍受精神上的痛苦折磨。总编慧眼如炬,凡有精彩之处必然随时指出,随时删掉。而我们自以为是的许多安全地带,原来全是雷区,这么多年活过来,谁料如此凶险。
新年第一期东企封面是pj撰写的菲律宾大班杨应琳,83岁的老人仍然保持一个少年的心境,嬉笑怒骂中包含着大智慧,他回忆了马克斯执政时代的故事,但被要求删除,一个菲律宾的商业巨子讲述一个已经死去的、被许多人鄙视的独裁者,这被看做是个严重的政治问题,好理由!杨应琳对“李光耀主义”的评价与众不同,可惜杂志上永远看不见了,他说:“历史已经做出结论,牺牲民主自由而取得的经济进步,不论如何美妙也是不会长久的”。
许倬云、巴克曼的访问做了一些修改,一些简洁有力的语句不见了,例子太多不胜枚举。
由此我益发相信,即使每天面对面,大家生活的年代也可能千差万别。从前我以为那只是我和我妈之间的代沟,现在看来,中国还有一批生活在1990年的人物,谨小慎微、宁左勿右,只为不掉乌纱、不断财路。
自宫然后自慰,与大家共勉。
http://www.mindmeters.com/showlog.asp?log_id=4226
黄一琨:两条命
快到年底了,崔英杰和邱兴华会不会死,如何死将是一个大事件。
前者会不会成为恶制度的第二个牺牲品?看到庭审,我才知道崔曾经为了那辆三轮车跪地乞求,这使后来的暴怒杀人成为必然。一个七尺男人,为了一辆不到300块钱的车,但是却是他的谋生饭碗,跪地求饶竟然不能引起丝毫同情,最终演变为惨杀。这是一个什么样的世道?
至于后者,我昨天问一位北大医学院的朋友,难道你们的那些老师没有一个人觉得他不正常?看到这样的事件,他们的专业知识跑到哪里去了?
满心期待崔英杰不死,邱兴华刀下留人。我对2006年最大的愿望不过如此,这是一种最典型的“钦差情结”,但是如之奈何?
附上崔英杰的辩护律师所作辩护词结尾。
尊敬的法官、尊敬的检察官:贩夫走卒、引车卖浆,是古已有之的正当职业。我的当事人来到城市,被生活所迫,从事这样一份卑微贫贱的工作,生活窘困,收入微薄。但他始终善良纯朴,无论这个社会怎样伤害他,他没有偷盗没有抢劫,没有以伤害他人的方式生存。我在法庭上庄严地向各位发问,当一个人赖以谋生的饭碗被打碎,被逼上走投无路的绝境,将心比心,你们会不会比我的当事人更加冷静和忍耐?我的当事人崔英杰,一直是孝顺的孩子,守法的良民,在部队是优秀的军人。他和他的战友们一直在为我们的国家默默付出;当他脱下军装走出军营,未被安置工作时也没有抱怨过这个社会对他的不公。这个国家像崔英杰一样在默默讨生活的复员军人何止千万,他们同样在关注崔英杰的命运,关注着本案的结果。法谚有云:立良法于天下者,则天下治。
尊敬的法官,尊敬的检察官:我们的法律、我们的城市管理制度究竟是要使我们的公民更幸福还是要使他们更困苦?我们作为法律人的使命是要使这个社会更和谐还是要使它更惨烈?我们已经失去了李志强是否还要失去崔英杰?
黄一琨:这就是问题
这几年,关于国有资产的问题,吵得七荤八素的,听说最近那个叫巩什么的无耻之尤又在聒噪了,丫挺的有本事就别让北大逼着学生上自己的课,自己不逼着北大开课。
国有资产能不能管好,理论实践证明了太多次了。这次财经又提供了中国式的实情,问题已经太明白不过了,还有弄不明白的,我建议大家就别争了,各自洗洗睡。
在金融资本的管理问题上,除了模式的选择,还有一个敏感的话题,即人事管理。
在2003年的机构改革中,金融机构的“人事权”,实际从金融工委转移到各监管当局,“代管党的组织关系”。对此,外界一直有所担忧,认为可能会损害监管部门的独立性。
事实上,无论是组织部门、国资委或拟议中的金融国有资本出资人机构,作为国家股东和利益的代表,完全可以在股份制改造完毕的国有企业里,只管向董事会派出并考核董事,通过董事会来完成“管人管事管资产”的市场化转换。
中国国际金融公司经济学家哈继铭表示,从国际经验看,金融资产的管理不应与政府发生直接关系,投资的方针、重大战略决策毫无疑问需要政府参与把关,但是高管人事任免最好远离政府,而应该多一些专业人士参与。目前,大型国有金融企业主要高管的任免,仍由组织部门直接任命。现在四大行虽号称取消了行政级别,但总行行长、副行长、身为党员的行长助理,实际还受行政级别的管理,整个经营班子等于仍是组织部门在主导。
“经营层面的高管人事一旦由组织部门来管,很多事情都异化了,股东的约束力就消失了。”一位金融专家表示。
“中管干部”的背景来自1999年十五届四中全会的决议,其中包括在企业中仍要强调党委领导。
据国资委党建工作局有关负责人向《财经》记者介绍,53家特大型央企“一把手”、党委书记、董事长、总经理由中央任命,由中组部进行考核,企业领导人员管理一局协助工作,这53家央企的副职由党建工作局(党委组织部)考核和任命;企业领导人员管理二局负责53家之外的央企领导班子成员,包括党委书记、党委副书记、董事长、总经理、副总经理、纪委书记及总会计师;下属上市公司的高管,有控股公司的由控股公司管理,有董事会的由董事会管理,央企主要负责人有的和上市公司有交叉。
不过,国资委毕竟获得了53家大型央企副职和其余108家央企高管层的人事权,这是一个重大的变化。“现在国资委工作有点成效,关键在于抓到了人事权。”财政部一位官员称,“企业一把手都要亲自跑国资委,因为涉及考核,年终奖励、定级、向国务院汇报。”
“这是政治标准和市场化如何结合的问题。”《财经》首席研究员陆磊认为:“人事权在官本位体系中被看做是最大的权力,也是能代表所有者权益的最重要的权力。如果股东不是经过董事会履行这一权力,所谓完善法人治理最终会如同竹篮打水。”
http://www.mindmeters.com/showlog.asp?log_id=4263
史彦:广州的平安夜
平安夜不平安,李翔写的书评被毙,金奇写的那本《中国震撼世界:饥饿之国的崛起》内容不算耸人听闻,那些细节放在任何一个都市报里相信都无法吸引足够的收视率,但在东企,确实不行。广州之行每月一次,从没留有任何好的记忆,不单彻夜加班痛苦不堪,还要时时忍受精神上的痛苦折磨。总编慧眼如炬,凡有精彩之处必然随时指出,随时删掉。而我们自以为是的许多安全地带,原来全是雷区,这么多年活过来,谁料如此凶险。
新年第一期东企封面是pj撰写的菲律宾大班杨应琳,83岁的老人仍然保持一个少年的心境,嬉笑怒骂中包含着大智慧,他回忆了马克斯执政时代的故事,但被要求删除,一个菲律宾的商业巨子讲述一个已经死去的、被许多人鄙视的独裁者,这被看做是个严重的政治问题,好理由!杨应琳对“李光耀主义”的评价与众不同,可惜杂志上永远看不见了,他说:“历史已经做出结论,牺牲民主自由而取得的经济进步,不论如何美妙也是不会长久的”。
许倬云、巴克曼的访问做了一些修改,一些简洁有力的语句不见了,例子太多不胜枚举。
由此我益发相信,即使每天面对面,大家生活的年代也可能千差万别。从前我以为那只是我和我妈之间的代沟,现在看来,中国还有一批生活在1990年的人物,谨小慎微、宁左勿右,只为不掉乌纱、不断财路。
自宫然后自慰,与大家共勉。
http://www.mindmeters.com/showlog.asp?log_id=4226
黄一琨:两条命
快到年底了,崔英杰和邱兴华会不会死,如何死将是一个大事件。
前者会不会成为恶制度的第二个牺牲品?看到庭审,我才知道崔曾经为了那辆三轮车跪地乞求,这使后来的暴怒杀人成为必然。一个七尺男人,为了一辆不到300块钱的车,但是却是他的谋生饭碗,跪地求饶竟然不能引起丝毫同情,最终演变为惨杀。这是一个什么样的世道?
至于后者,我昨天问一位北大医学院的朋友,难道你们的那些老师没有一个人觉得他不正常?看到这样的事件,他们的专业知识跑到哪里去了?
满心期待崔英杰不死,邱兴华刀下留人。我对2006年最大的愿望不过如此,这是一种最典型的“钦差情结”,但是如之奈何?
附上崔英杰的辩护律师所作辩护词结尾。
尊敬的法官、尊敬的检察官:贩夫走卒、引车卖浆,是古已有之的正当职业。我的当事人来到城市,被生活所迫,从事这样一份卑微贫贱的工作,生活窘困,收入微薄。但他始终善良纯朴,无论这个社会怎样伤害他,他没有偷盗没有抢劫,没有以伤害他人的方式生存。我在法庭上庄严地向各位发问,当一个人赖以谋生的饭碗被打碎,被逼上走投无路的绝境,将心比心,你们会不会比我的当事人更加冷静和忍耐?我的当事人崔英杰,一直是孝顺的孩子,守法的良民,在部队是优秀的军人。他和他的战友们一直在为我们的国家默默付出;当他脱下军装走出军营,未被安置工作时也没有抱怨过这个社会对他的不公。这个国家像崔英杰一样在默默讨生活的复员军人何止千万,他们同样在关注崔英杰的命运,关注着本案的结果。法谚有云:立良法于天下者,则天下治。
尊敬的法官,尊敬的检察官:我们的法律、我们的城市管理制度究竟是要使我们的公民更幸福还是要使他们更困苦?我们作为法律人的使命是要使这个社会更和谐还是要使它更惨烈?我们已经失去了李志强是否还要失去崔英杰?
2006年12月14日星期四
N73终极秘笈
http://www.ch999.cn/bbs/ShowPost.asp?menu=Previous&ForumID=13&ThreadID=233
www.n73.com.cn
N73是功能相当强大的手机,无愧于NOKIA"赋予它"多媒体电脑"的称呼.但是由于它是双模手机,支持3G.在国内缺乏支持.反而给我们这样的使用者造成不便.
经过多次摸索,建议大家目前将其3G相关功能关闭.以节省不必要的消耗.具体如下:
1.在手机网络设置中,把网络模式设成"GSM".不使用双模式和"UTMS".
UMTS(Universal Mobile Telecommunications System)通用移动通信系统是3G技术的统称.除WCDMA作为首选空中接口技术获得不断完善外,UMTS还相继引入了TD-SCDMA和HSDPA技术(High Speed Downlink Packet Access ,高速下行链路数据分组接入)。前者是中国的技术提案首次成为国际主流通信标准。它可利用单边的频谱提供高速移动通信组网能力。后者是引入了利于超高速数据传送的速率控制技术,使下行链路无线带宽达到10Mbps 。在核心网技术方面,则引入了分组软交换技术,进而顺应IP多媒体应用的发展趋势引入了IP多媒体域,也就是IMS(IP Multimedia Service,IP多媒体服务)以实现全IP多业务移动网络的最终发展目标。
2."网络运营商时间"选择"开".中移动已经提供了此项服务.时间肯定准确,不用白不用.
3.在"情景模式"下设置里有"说出呼叫方姓名".选中"开".然后回到桌面.按住"时钟"不动即可通过呼叫对方姓名进行拨号.
这个功能是通过手机自带的识字发音的软件实现的.看来它占的内存不小.
但是billyben不建议大家使用此功能.因为成功率很低,经常喊张三,李四却出来了.如果你自认为自己的发音和电脑发音很接近,那就恭喜了!!
再3D铃声和"说出呼叫方姓名"功能不能同时使用,否则一定死机!
4.若没有按照常规的方法卸载程序,再次安装相同的软件则可能提示安装失败,估计是S60第三版针对安全性所作出的一项细节调整。所以安装程序和卸载时请慎重.
N73装软件重要提示!很多朋友在N73上装了*.Jar的程序后不能运行,解决方法是
a、*.jar的程序安装时必须Jar程序文件名要英文名,有些朋友为了方便管理原程序把*.jar(如:ABC.JAR)改成了中文(如:游戏1.JAR),这样做的方便虽然直观清楚知道了要安装的程序是什么东东,但一在手机上安装完,程序往往不能打开,打开没反应!所以大家一定不能将JAR安装程序改成中文,如有改动了,可以随便改回英文(只要是英文就行,随你改,关键是要半角字符),安装后就可以正常运行,有的JAR程序启动比较慢,所以不要急,等几秒钟就可运行(一般不大于10秒)。
b、如果想清楚管理好JAR原安装程序,建议大家可以建个中文文件夹,然后再把英文*.jar文件放进。这样有利于分类。
c、*.sis或*.sisx的文件可以是中文名,不影响安装运行!
顺便说一下:旧版handay clock闹钟软件和N73不兼容,开启闹钟响过N73的多媒体键就失效!请大家换用4.02以上版本
所以只要是正常的JAR程序N73都能运行,只有屏幕全屏半屏之分。
5.在N73中可对DOC文档缩放浏览;XLS文档能够调整行列大小、平移、冻结窗口等操作;PPT文档则能够全屏演示。FLASH播放器版本低,很多稍大的flash拷贝进来都无法播放.过于复杂的ppt和word,excel也都如此.
6.安装主题请尽量到手机里.如果装到卡里,关机后再开机会恢复成默认的nokia主题.
安装主题的2种方法:
a、将主题安装文件(SIS或SISX格式)COPY到卡上,用文件管理进行安装。
b、利用读卡器或数据线的“数据连接”将已经解压的主题文件夹COPY卡上,直接使用。路径为X:\private\10207114\import\(假设X是储存卡)
两安装方式比较:
a、安装简单,但会在C盘“C:\sys\install\sisregistry\”下产生一个文件。如C:\sys\install\sisregistry\a00000eb\00000002_0000.ctl
主题安装多了占用C盘空间。
b、安装相对麻烦(也不是很烦),不需要了安装步骤,不会在C盘产生任何文件,亦不能安装在C盘。
正确选择安装主题的类型:
有的朋友见到好看的主题就安装,没看清主题是否合适自己:
a、不同于手机型号的主题不要安装,否则可能出现图像变形。
b、安装主题不实用,有的主题光是待机图好看,但功能表、信息、选择条、外屏等的字体根本看不清。
c、安装的主题太大,有的上1M,严重影响速度!
主题的删除:
a、用方法一安装主题的,在“程序管理”里面删除。如果主题安装得太多,可能会在“程序管理”中看不到解决方法是用Y-管理器删除C:\preinstallAppscache.dat文件,再看看是否能在“程序管理”中删除。如不行的,用下面的方法删除。
b、用方法二安装主题的,记住主题的名称,利用读卡器或数据线的“数据连接”在X:\private\10207114\import\中找到主题的文件夹,将该文件夹删除。
7.在"音乐"中无法找到或者添加曲目,可以选择将原有曲目列表删除再更新.
8.针对不同内容的浏览,诺基亚N73提供了两个不同的网络浏览器入口,主功能菜单下的浏览器用于普通WAP网页的浏览,EDGE的支持确保了较快的上网速度。至于应用程序下的浏览器主要用为浏览HTML内容而设的,支持三种字体、全屏模式、以及协助页面上下左右移动的模拟鼠标。
9.在应用软件下的Anti-Virus软件,其实是PC中著名杀毒软件Anti-Virus的手机版,鉴于未来手机病毒有蔓延的趋势,诺基亚此举非常明智,但是目前暂无忧虑,可以关闭此软件.
10.1100毫安时的BP-6M锂电池,由于2.4英寸的大屏幕和强大的多媒体功能也显得力不从心.多机多次测试待机时间只能支持2天左右.如果夜间关机可以达到3-4天.电池显示是6格,第一格是最经用的,最后一格也能坚持点时间,中间的四格相当于第一格。
11.在进行程序操作的时候,按键的速度要慢些,不能过快,否则会导致死机、重启、黑屏、白屏等现象! N73 在进入一些菜单的过程中,会有需要 20 秒左右才能进入的情况(智能的和普通的就是不一样)。
12.笔画键的功能
1).按住它再开机
有类似电脑的[安全模式]的效果
可以阻挡一些开机会自动运行的程式[或执行档.exe]
也有增加运行内存的效果
2.)在编辑简讯或文字时.按一下可以切换输入法
3.)在编辑简讯或文字时
按住它再按方向键.文字会反白
可以使用复制及贴上的功能
常打简讯的朋友快试试吧
4.)可以标记联络人.文件.简讯等.
先按住笔画键.再按上或下即可标记.超方便
若你不想全选的话.之前都要一个一个标记很麻烦
现在用笔画快很多喔
通讯录[标记完后按选项.你就可以处理它们了]
连简讯也能标记
5.)可将简讯复制到记事本里喔
首先打开你要复制的简讯
然后长按笔键不放 (又是一个笔键的密技!)
再按一下 C 键 即完成(手机不会出现任何显示完成) !!
切记 C 键按一次就好 不要长按 不然在记事本里的复制 你就有得删了!!
想要把短讯复制到笔记本里用蓝芽发送 但又不想使用外挂软件的朋友 可试试这招
既简单又容易 !!
13.功能键的应用
不想结束正在使用的程式,按功能键退出便可。程式仍然在背景运行。
按下功能键数秒不放,屏幕左上角会显示正在运行的程式,可自由切换。
14.一些进阶应用,令操控N73更加便捷。
☆ 在所有“九宫格”的程式功能表里,直接按数位键1-9,* ,0 ,# 就可以直接打开对应位置的图示,举个例子,因为我的图示都是重分类打乱了……打开“功能表”,第1个位置是“办公工具”文件夹,该文件夹里第1个是 word,第2个是Excel,那我我要打开word,只需要按“功能表键”和 数字键 " 1"就OK了,打开Excel就是按“功能表键”和数字键 "2",如此类推……为了用好这个功能,善用图示的移动,进行合理重分类是关键,尽量把常用程式都定义在前9位……
☆按一下0是空格,两下是数字0,三下是回车换行
☆ 一条资讯,按住笔型键,再按删除C键,可以将短信复制到记事本(什么意思呢,就是在看资讯的时候按住笔型键再按一下C字键,然后去记事本看一下,是不是已经存进去了……这样就可以放心看一条删一条了,这样别人打开收件箱向来没有短信,其实都在记事本里……哈哈哈哈,想跟我斗??……)
☆需要连续输入符号时,只须按*移动你想要输入的符号,按几下5键然后再按确定键,就可以了,(输无敌分隔线-------和一些表情比如^-^ -_-!!! 时很方便)
15.自定图片全荧幕为墙纸的方法
要设定全荧幕墙纸, 必须把图片放入你使用中的布景主题(Theme), 你可以使用S60 Theme Studio for Symbian OS 制作你的主题时把你自定图片放入其中, 然后汇出成sis档, 并把该主题安装至手机, 在布景主题功能表中应用该主题于手机!
16.格式化N73
1) *#7780# - 一般 reset
只重灌 phone program / settings。但会保留 Data
(e.g. 相 / 新安装 software …)
作用和 [功能表] > [手机设定] > [一般] > [原厂设定] 一样。
2) *#7370# - 深层 reset
会把 N70 的整个 C: 重灌 (p.s. N70 内置 memory 是 C:,RS-MMC 是 E: )。
所有在内置 memory 的东西都会 bye-bye。 成个 C: 会被 format 和
OS 会被重灌。 回复出机时的设定。
以上 #1 / #2 需要输入 "锁定码"。 内置"锁定码"为 "12345"
17.使用名片识别系统时注意手机和名片方向一致,即手机拍照键和名片顶部同方向。否则取出的是乱码。
18.N73运行加速方法
只使用一个SIM卡,N73的运行速度会变慢,需要清理C盘垃圾文件。最简单的方法是取MINISD卡接着换SIM卡后再开机。待机3-5分钟后关机换回原来的SIM卡。这样Series60系统就会重新将C盘的数据重写一次,自动清除了原来无用的文件。大家一试无妨。
www.n73.com.cn
N73是功能相当强大的手机,无愧于NOKIA"赋予它"多媒体电脑"的称呼.但是由于它是双模手机,支持3G.在国内缺乏支持.反而给我们这样的使用者造成不便.
经过多次摸索,建议大家目前将其3G相关功能关闭.以节省不必要的消耗.具体如下:
1.在手机网络设置中,把网络模式设成"GSM".不使用双模式和"UTMS".
UMTS(Universal Mobile Telecommunications System)通用移动通信系统是3G技术的统称.除WCDMA作为首选空中接口技术获得不断完善外,UMTS还相继引入了TD-SCDMA和HSDPA技术(High Speed Downlink Packet Access ,高速下行链路数据分组接入)。前者是中国的技术提案首次成为国际主流通信标准。它可利用单边的频谱提供高速移动通信组网能力。后者是引入了利于超高速数据传送的速率控制技术,使下行链路无线带宽达到10Mbps 。在核心网技术方面,则引入了分组软交换技术,进而顺应IP多媒体应用的发展趋势引入了IP多媒体域,也就是IMS(IP Multimedia Service,IP多媒体服务)以实现全IP多业务移动网络的最终发展目标。
2."网络运营商时间"选择"开".中移动已经提供了此项服务.时间肯定准确,不用白不用.
3.在"情景模式"下设置里有"说出呼叫方姓名".选中"开".然后回到桌面.按住"时钟"不动即可通过呼叫对方姓名进行拨号.
这个功能是通过手机自带的识字发音的软件实现的.看来它占的内存不小.
但是billyben不建议大家使用此功能.因为成功率很低,经常喊张三,李四却出来了.如果你自认为自己的发音和电脑发音很接近,那就恭喜了!!
再3D铃声和"说出呼叫方姓名"功能不能同时使用,否则一定死机!
4.若没有按照常规的方法卸载程序,再次安装相同的软件则可能提示安装失败,估计是S60第三版针对安全性所作出的一项细节调整。所以安装程序和卸载时请慎重.
N73装软件重要提示!很多朋友在N73上装了*.Jar的程序后不能运行,解决方法是
a、*.jar的程序安装时必须Jar程序文件名要英文名,有些朋友为了方便管理原程序把*.jar(如:ABC.JAR)改成了中文(如:游戏1.JAR),这样做的方便虽然直观清楚知道了要安装的程序是什么东东,但一在手机上安装完,程序往往不能打开,打开没反应!所以大家一定不能将JAR安装程序改成中文,如有改动了,可以随便改回英文(只要是英文就行,随你改,关键是要半角字符),安装后就可以正常运行,有的JAR程序启动比较慢,所以不要急,等几秒钟就可运行(一般不大于10秒)。
b、如果想清楚管理好JAR原安装程序,建议大家可以建个中文文件夹,然后再把英文*.jar文件放进。这样有利于分类。
c、*.sis或*.sisx的文件可以是中文名,不影响安装运行!
顺便说一下:旧版handay clock闹钟软件和N73不兼容,开启闹钟响过N73的多媒体键就失效!请大家换用4.02以上版本
所以只要是正常的JAR程序N73都能运行,只有屏幕全屏半屏之分。
5.在N73中可对DOC文档缩放浏览;XLS文档能够调整行列大小、平移、冻结窗口等操作;PPT文档则能够全屏演示。FLASH播放器版本低,很多稍大的flash拷贝进来都无法播放.过于复杂的ppt和word,excel也都如此.
6.安装主题请尽量到手机里.如果装到卡里,关机后再开机会恢复成默认的nokia主题.
安装主题的2种方法:
a、将主题安装文件(SIS或SISX格式)COPY到卡上,用文件管理进行安装。
b、利用读卡器或数据线的“数据连接”将已经解压的主题文件夹COPY卡上,直接使用。路径为X:\private\10207114\import\(假设X是储存卡)
两安装方式比较:
a、安装简单,但会在C盘“C:\sys\install\sisregistry\”下产生一个文件。如C:\sys\install\sisregistry\a00000eb\00000002_0000.ctl
主题安装多了占用C盘空间。
b、安装相对麻烦(也不是很烦),不需要了安装步骤,不会在C盘产生任何文件,亦不能安装在C盘。
正确选择安装主题的类型:
有的朋友见到好看的主题就安装,没看清主题是否合适自己:
a、不同于手机型号的主题不要安装,否则可能出现图像变形。
b、安装主题不实用,有的主题光是待机图好看,但功能表、信息、选择条、外屏等的字体根本看不清。
c、安装的主题太大,有的上1M,严重影响速度!
主题的删除:
a、用方法一安装主题的,在“程序管理”里面删除。如果主题安装得太多,可能会在“程序管理”中看不到解决方法是用Y-管理器删除C:\preinstallAppscache.dat文件,再看看是否能在“程序管理”中删除。如不行的,用下面的方法删除。
b、用方法二安装主题的,记住主题的名称,利用读卡器或数据线的“数据连接”在X:\private\10207114\import\中找到主题的文件夹,将该文件夹删除。
7.在"音乐"中无法找到或者添加曲目,可以选择将原有曲目列表删除再更新.
8.针对不同内容的浏览,诺基亚N73提供了两个不同的网络浏览器入口,主功能菜单下的浏览器用于普通WAP网页的浏览,EDGE的支持确保了较快的上网速度。至于应用程序下的浏览器主要用为浏览HTML内容而设的,支持三种字体、全屏模式、以及协助页面上下左右移动的模拟鼠标。
9.在应用软件下的Anti-Virus软件,其实是PC中著名杀毒软件Anti-Virus的手机版,鉴于未来手机病毒有蔓延的趋势,诺基亚此举非常明智,但是目前暂无忧虑,可以关闭此软件.
10.1100毫安时的BP-6M锂电池,由于2.4英寸的大屏幕和强大的多媒体功能也显得力不从心.多机多次测试待机时间只能支持2天左右.如果夜间关机可以达到3-4天.电池显示是6格,第一格是最经用的,最后一格也能坚持点时间,中间的四格相当于第一格。
11.在进行程序操作的时候,按键的速度要慢些,不能过快,否则会导致死机、重启、黑屏、白屏等现象! N73 在进入一些菜单的过程中,会有需要 20 秒左右才能进入的情况(智能的和普通的就是不一样)。
12.笔画键的功能
1).按住它再开机
有类似电脑的[安全模式]的效果
可以阻挡一些开机会自动运行的程式[或执行档.exe]
也有增加运行内存的效果
2.)在编辑简讯或文字时.按一下可以切换输入法
3.)在编辑简讯或文字时
按住它再按方向键.文字会反白
可以使用复制及贴上的功能
常打简讯的朋友快试试吧
4.)可以标记联络人.文件.简讯等.
先按住笔画键.再按上或下即可标记.超方便
若你不想全选的话.之前都要一个一个标记很麻烦
现在用笔画快很多喔
通讯录[标记完后按选项.你就可以处理它们了]
连简讯也能标记
5.)可将简讯复制到记事本里喔
首先打开你要复制的简讯
然后长按笔键不放 (又是一个笔键的密技!)
再按一下 C 键 即完成(手机不会出现任何显示完成) !!
切记 C 键按一次就好 不要长按 不然在记事本里的复制 你就有得删了!!
想要把短讯复制到笔记本里用蓝芽发送 但又不想使用外挂软件的朋友 可试试这招
既简单又容易 !!
13.功能键的应用
不想结束正在使用的程式,按功能键退出便可。程式仍然在背景运行。
按下功能键数秒不放,屏幕左上角会显示正在运行的程式,可自由切换。
14.一些进阶应用,令操控N73更加便捷。
☆ 在所有“九宫格”的程式功能表里,直接按数位键1-9,* ,0 ,# 就可以直接打开对应位置的图示,举个例子,因为我的图示都是重分类打乱了……打开“功能表”,第1个位置是“办公工具”文件夹,该文件夹里第1个是 word,第2个是Excel,那我我要打开word,只需要按“功能表键”和 数字键 " 1"就OK了,打开Excel就是按“功能表键”和数字键 "2",如此类推……为了用好这个功能,善用图示的移动,进行合理重分类是关键,尽量把常用程式都定义在前9位……
☆按一下0是空格,两下是数字0,三下是回车换行
☆ 一条资讯,按住笔型键,再按删除C键,可以将短信复制到记事本(什么意思呢,就是在看资讯的时候按住笔型键再按一下C字键,然后去记事本看一下,是不是已经存进去了……这样就可以放心看一条删一条了,这样别人打开收件箱向来没有短信,其实都在记事本里……哈哈哈哈,想跟我斗??……)
☆需要连续输入符号时,只须按*移动你想要输入的符号,按几下5键然后再按确定键,就可以了,(输无敌分隔线-------和一些表情比如^-^ -_-!!! 时很方便)
15.自定图片全荧幕为墙纸的方法
要设定全荧幕墙纸, 必须把图片放入你使用中的布景主题(Theme), 你可以使用S60 Theme Studio for Symbian OS 制作你的主题时把你自定图片放入其中, 然后汇出成sis档, 并把该主题安装至手机, 在布景主题功能表中应用该主题于手机!
16.格式化N73
1) *#7780# - 一般 reset
只重灌 phone program / settings。但会保留 Data
(e.g. 相 / 新安装 software …)
作用和 [功能表] > [手机设定] > [一般] > [原厂设定] 一样。
2) *#7370# - 深层 reset
会把 N70 的整个 C: 重灌 (p.s. N70 内置 memory 是 C:,RS-MMC 是 E: )。
所有在内置 memory 的东西都会 bye-bye。 成个 C: 会被 format 和
OS 会被重灌。 回复出机时的设定。
以上 #1 / #2 需要输入 "锁定码"。 内置"锁定码"为 "12345"
17.使用名片识别系统时注意手机和名片方向一致,即手机拍照键和名片顶部同方向。否则取出的是乱码。
18.N73运行加速方法
只使用一个SIM卡,N73的运行速度会变慢,需要清理C盘垃圾文件。最简单的方法是取MINISD卡接着换SIM卡后再开机。待机3-5分钟后关机换回原来的SIM卡。这样Series60系统就会重新将C盘的数据重写一次,自动清除了原来无用的文件。大家一试无妨。
2006年12月9日星期六
我爬墙,我不脱鞋上床,我天天吃白糖
from xu jinglei's blog, funny, hehe.
还有,椰丝儿,买大母
http://blog.sina.com.cn/u/46f37fb5010001vc
今天是本年度春节的最后一个狂欢日,将和三个闺蜜在一个朋友的餐馆请一群朋友吃晚饭。这个春节在玩儿乐上收获颇丰,主要有两个:台球进步,学会斗地主。
是谁教会了我斗地主?!好玩!而且明显的要上瘾……
总的来说,对于所有感觉自己要上瘾的东西(其中以吃喝玩乐为主,也包括人),都会有一些本能的排斥,什么事情上了瘾都容易有副作用,但是越知道这样就越放不下,就跟和自己作对似的。
昨日后半夜,我与大昕子、博学斗地主,刀光剑影,手中有自己的牌,眼睛看着已经落了地的牌,心中算计别人的牌。一直到早上7点半,脸绿着回家了,还意犹未尽。
千万不要让我爸知道:
打牌?!你无聊透顶!!!
玩物丧志!
你的脖子!!
好吧,我的老大,我的爸爸,以后不了……这不是过节嘛……
干点有意义的事情去!!!
过节就不要命啦?!!!!
赌博!!!
不是不是真不是,一块钱一分儿……只是个意思……
不许狡辩!!!
请你不要变成爸爸最讨厌的那种人!!!
椰丝儿!买大母!!我的老大!我的爸爸!!
从明天开始,收心一天,开始工作!请大家严厉监督!!!
http://blog.sina.com.cn/u/46f37fb501000622
致老大和同志们书
我的顶头上司我的老大每次聊天聊到最后,一没什么话说的时候总是那句老话:我觉得你该学点东西了……卟啦卟啦卟啦……小时候每次听到这句话脑子就是一紧,心里嘀咕:……又学什么啊……终于,长大了,不心虚啦,也敢皱着眉头来一句:“学什么呀?!”了——这是今天的事情。不但如此,还能摆出一幅不学无术的样子……过瘾……偷眼看老大,老大的反应扑哧是笑了:嘿,长能耐了啊你。嘻嘻,老大原来是个纸老虎……要是早发现了,我爬墙,我不脱鞋上床,我天天吃白糖。
长大了,唯一的好处就是自由,没人再能逼你。长大了唯一的坏处是非得自律,就是那种自发的,发自内心的要求自己,做不到,就自责就谴责自己,脑子里一个小人儿:你你你,你你你,你怎么能这样,你没耐心,你粗枝大叶,你小心眼儿,你充大头,你你你,你不学无术……反抗别人是一种争取自由的表现,心里总是油然升起一种很正义的感觉;反抗自己容易得抑郁症,大概是弗洛伊德他老先生说的那种:超我过度发达。据说最严重的会引发自杀等行为。可但是,但可是,在下活的正美,可不要得了这毛病。于是又有另外一个小人儿,另外一个小人儿说,不不不,没有一定之规,人怎样活都可以,怕冷不是娇气,也不叫:不,坚,强,穿多点就行了;粗枝大叶那叫大大咧咧,传说中这是个美德——至少好多人都这么说;没耐心也别老忍着,憋出个好歹来谁负责啊,就小眼睛一翻,又叫卫生眼球一瞪:沙特阿普,再见,还有,见你的鬼去吧,神经病,滚开………………唯一的问题,就是翻脸如翻刀,翻出去的脸就像翻出去的水,想再翻回来,挺难……好吧,想不再翻回来的时候再翻。说着有点绕啊……理却就是这么个理,反正所有的事情都有另外一面,怎么着都行,谁别碍着谁就行了。谁知道呢。
老大,我这么说行吗……您教育出来的孩子,好歹,也就是她了……她基本还算:孝顺,老实,爱学习,天天向上,热爱祖国人民,团结友爱,对同志像春天般温暖,没有敌人,有人把她当了假想敌……那就没办法了,只要人家高兴,也算助人为乐。还有:聪明善良朴实……不能说了,再说把自己说不好意思了,反正离完美不远……也不是太近……不能太完美……人都说了,追求完美就是把自己逼上绝路,还有老话说:木秀于林……大风就催之……
在臭鸡蛋和烂西红柿还没有砸来之前,我闪了,和远路来的朋友,募捐小同学吃饭去了。生命如此短暂,务必别惹事儿,同时,深爱自己——我特美,我特棒,我们都是自大狂……
还有,椰丝儿,买大母
http://blog.sina.com.cn/u/46f37fb5010001vc
今天是本年度春节的最后一个狂欢日,将和三个闺蜜在一个朋友的餐馆请一群朋友吃晚饭。这个春节在玩儿乐上收获颇丰,主要有两个:台球进步,学会斗地主。
是谁教会了我斗地主?!好玩!而且明显的要上瘾……
总的来说,对于所有感觉自己要上瘾的东西(其中以吃喝玩乐为主,也包括人),都会有一些本能的排斥,什么事情上了瘾都容易有副作用,但是越知道这样就越放不下,就跟和自己作对似的。
昨日后半夜,我与大昕子、博学斗地主,刀光剑影,手中有自己的牌,眼睛看着已经落了地的牌,心中算计别人的牌。一直到早上7点半,脸绿着回家了,还意犹未尽。
千万不要让我爸知道:
打牌?!你无聊透顶!!!
玩物丧志!
你的脖子!!
好吧,我的老大,我的爸爸,以后不了……这不是过节嘛……
干点有意义的事情去!!!
过节就不要命啦?!!!!
赌博!!!
不是不是真不是,一块钱一分儿……只是个意思……
不许狡辩!!!
请你不要变成爸爸最讨厌的那种人!!!
椰丝儿!买大母!!我的老大!我的爸爸!!
从明天开始,收心一天,开始工作!请大家严厉监督!!!
http://blog.sina.com.cn/u/46f37fb501000622
致老大和同志们书
我的顶头上司我的老大每次聊天聊到最后,一没什么话说的时候总是那句老话:我觉得你该学点东西了……卟啦卟啦卟啦……小时候每次听到这句话脑子就是一紧,心里嘀咕:……又学什么啊……终于,长大了,不心虚啦,也敢皱着眉头来一句:“学什么呀?!”了——这是今天的事情。不但如此,还能摆出一幅不学无术的样子……过瘾……偷眼看老大,老大的反应扑哧是笑了:嘿,长能耐了啊你。嘻嘻,老大原来是个纸老虎……要是早发现了,我爬墙,我不脱鞋上床,我天天吃白糖。
长大了,唯一的好处就是自由,没人再能逼你。长大了唯一的坏处是非得自律,就是那种自发的,发自内心的要求自己,做不到,就自责就谴责自己,脑子里一个小人儿:你你你,你你你,你怎么能这样,你没耐心,你粗枝大叶,你小心眼儿,你充大头,你你你,你不学无术……反抗别人是一种争取自由的表现,心里总是油然升起一种很正义的感觉;反抗自己容易得抑郁症,大概是弗洛伊德他老先生说的那种:超我过度发达。据说最严重的会引发自杀等行为。可但是,但可是,在下活的正美,可不要得了这毛病。于是又有另外一个小人儿,另外一个小人儿说,不不不,没有一定之规,人怎样活都可以,怕冷不是娇气,也不叫:不,坚,强,穿多点就行了;粗枝大叶那叫大大咧咧,传说中这是个美德——至少好多人都这么说;没耐心也别老忍着,憋出个好歹来谁负责啊,就小眼睛一翻,又叫卫生眼球一瞪:沙特阿普,再见,还有,见你的鬼去吧,神经病,滚开………………唯一的问题,就是翻脸如翻刀,翻出去的脸就像翻出去的水,想再翻回来,挺难……好吧,想不再翻回来的时候再翻。说着有点绕啊……理却就是这么个理,反正所有的事情都有另外一面,怎么着都行,谁别碍着谁就行了。谁知道呢。
老大,我这么说行吗……您教育出来的孩子,好歹,也就是她了……她基本还算:孝顺,老实,爱学习,天天向上,热爱祖国人民,团结友爱,对同志像春天般温暖,没有敌人,有人把她当了假想敌……那就没办法了,只要人家高兴,也算助人为乐。还有:聪明善良朴实……不能说了,再说把自己说不好意思了,反正离完美不远……也不是太近……不能太完美……人都说了,追求完美就是把自己逼上绝路,还有老话说:木秀于林……大风就催之……
在臭鸡蛋和烂西红柿还没有砸来之前,我闪了,和远路来的朋友,募捐小同学吃饭去了。生命如此短暂,务必别惹事儿,同时,深爱自己——我特美,我特棒,我们都是自大狂……
2006年12月8日星期五
我的Nokia 6600丢了
T9280,这是出租车的车号。
手机丢了,装手机的牛皮袋子丢了,蓝牙耳机丢了。
我想十有八九是他拿了,不承认而已,能否归还全靠个人的素质。后悔没有来得及装那个防盗软件。
已经用习惯了Nokia的小胖了,今天换了Motorla的L6g,反而不习惯。
好怀念啊,那些漂亮的theme,当然,还有通信录,真让我心痛。
手机丢了,装手机的牛皮袋子丢了,蓝牙耳机丢了。
我想十有八九是他拿了,不承认而已,能否归还全靠个人的素质。后悔没有来得及装那个防盗软件。
已经用习惯了Nokia的小胖了,今天换了Motorla的L6g,反而不习惯。
好怀念啊,那些漂亮的theme,当然,还有通信录,真让我心痛。
2006年12月3日星期日
芬兰人的自律意识与素质/美国人,法国人和中国人De故事
芬兰人的自律意识与素质
名列二○○一年全球竞争力第一的北欧小国芬兰,在全国各个城市,基本上看不到哪条街上有交通警察在维护交通秩序。大凡在芬兰生活过一段时间的人,都会强烈地感受到芬兰人普遍遵纪守法的社会风气,典型的例子,就是即使在深更半夜的空旷街头,也不会有哪个芬兰人闯红灯。自律的素质高到这种程度,委实令人钦羡!
正因为芬兰人有着这样好的社会道德素养,所以,为国家的普遍法制夯实了必备的基础,并为市场经济的健康成长创造了必要土壤,进而打造出全球第一的国际竞争力,将美国这样的世界一流大国也甩到了后头。在世上有哪个国家的国民素质能高到在无人监督甚至无政府管理的情况下也能自律?日本算一个,德国也算一个。
首都师范大学的政法教授房宁在日本曾亲历过一次堵车,那情景足以令全世界震撼:从伊豆半岛到东京的公路上,几万辆车一辆挨一辆,排了一百多公里。那个时间段,几乎所有的车辆都是回东京的,道路右侧堵成一条长龙,而左侧却空出了一条“无车道”,谁要是开到左侧,可以一溜烟地直奔东京。然而,就是没有一辆车插到左侧空荡荡的“无车道”超行。
再来看看二次世界大战期间发生在德国的一个实例。一九四四年冬,盟军已经完成了对德国的合围,法西斯德国败亡在即。那时,德国百姓生活陷入困境,食物短缺,燃料匮乏。由于德国地处中欧,冬天非常寒冷,缺乏燃料可能导致许多居民被冻死,不得已,各地政府只得让市民自己上山砍树,回家生火取暖。
据战前留学被困德国的季羡林教授回忆,德国人是这样砍树的:林业人员先在茫茫林海中搜寻,寻找老弱树和劣质树,并在这些树上画一个红圈,然后让市民去砍伐这些树。“砍伐没有红圈的树,要受到处罚。”问题是,谁来执行处罚?当时的德国,行政管理已名存实亡,公务员已尽数调到前线去了,市内找不到警察,全国基本上已呈现真空状态。但直到战争结束,在全德国也没有发生过一起居民乱砍滥伐的事,他们全都忠实地执行了这个规定。
事隔五十多年后,季羡林谈起这件事时仍感喟不已:德国人“具备了无政府的条件却无无政府的现象。”而这样的奇迹,正是由全民严格自律的高素质创造出来的。
世界各国都在讲要提高国民素质,然而,国民的高素质到底有什么标准?严于自律便是为人素质的最高境界。自律不但是一种道德,也是一种伦理。不论国家的社会性质有何差异,但这一点,却是社会人类的共同准则。
自律作为一种社会道德,虽出自于对自己的真正关爱,但更出自于关爱社会的良心。
自律的本能不会与生俱来,它虽然要靠社会伦理的教化,但更要靠法制的强力规范。意大利西西里岛墨西拿市市长米塞佩.布赞卡,一九九五年八月与妻子外出旅游,让公务车司机开车将他们送到四百公里以外的港口,回来后又让司机接他们回家。意大利消费者协会联合会就此将布赞卡告上法庭,指控他滥用职权,损害了纳税人利益。
二○○三年十月二十一日,意大利最高法庭裁定布赞卡市长与妻子私用公务车属违法行为,以滥用职权罪判处其半年监禁。堂堂一个市的市长,因为用了趟私车,就被判锒铛入狱,法律的严格真的到了“王子犯法与庶民同罪”的地步。前车之覆,后车之鉴,容不得你不严格自律。
中国内地正在加强社会主义法制,并且已取得了显著成效。相信假以时日,国人的自律意识定会普遍增强,自律行为定会蔚然成风。有了全民素质的大提高,则中华的繁荣、崛起、腾飞可期。
美国人,法国人和中国人De故事
一个美国人,一个法国人还有一个中国人走在大沙漠中, 走着走着看到一个瓶子,打开瓶塞后飘出来一个人来,那个人说:"我是神仙,我能满足你们每个人 三个愿望!"
美国人第一个抢着说:"我第一个愿望是要很多的钱." 神仙说:"这个简单,满足你!说说第二个愿望吧." 美国人说:我还要很多的钱!" 神仙满足他的愿望后,美国人又说了他的第三个愿望 :"把我弄回家." 神仙说:"没问题." 于是美国人带着很多的钱回了美国.
神仙又问法国人.
法国人说:"我要美女!" 神仙给了他美女. 法国人又说:我还要美女!" 神仙也满足了他,给了他美女.. 法国人最后说到:"把我送回法国."
神仙把法国人送回国后问中国人要什么. 中国人说:"先来瓶二锅头吧." 神仙给了他.问他第二个愿望是什么. 中国人说:再来一瓶二锅头!" 神仙问他第三个愿望是什么. 中国人说:"我挺想法国人和美国人的, 你把他们都弄回来吧 ”。
法国人和美国人气的不得了,但又无可奈何,三个人只好继续走. 走着走着又看见一个瓶子,打开塞子后又冒出一个人来, 那个人说:"我是刚才那个神仙的徒弟, 法力没他高强, 所以只能满足你们每个人两个愿望."
法国人和美国人合计合计认为先让中国人说为好,免得一会又被他弄回来.
于是中国人说:"那就先来瓶二锅头吧." 神仙满足了他的愿望. 法国人和美国人催促中国人赶快把第二个愿望说出来.
中国人喝完二锅头后不紧不慢地对神仙说:"行了, 没事了,你丫走吧."
美国人和法国人气呼呼的跟着中国人继续跋涉,走着走着又看到一个瓶子,打开瓶塞后又飘出一个人来,那个人说:"我是那个神仙的徒弟的徒弟,我只能满足你们每个人一个愿望!" 美国人急忙抢着说:"我再也不想见到那个中国人了." 神仙说:"好的",然后转头问法国人:“你的呢?“ 法国人急忙说:"我也不想见到那个中国人了"神仙说:"好的.",然后转头问中国人:“你的呢?“中国人说:“他们说的都不算“
于是乎美国人和法国人咬牙切齿的跟着中国人,走着走着又看到一个瓶子,打开瓶塞后又飘出一个人来,那个人说:"我是那个神仙的徒弟的徒弟的徒弟,我只能满足你们三人一个愿望!"
美国人和法国人异口同声的喊道:“那个中国人说的什么都不算“。那个人说:“好的“,于是乎转头问中国人:“你想说什么?“
那个中国人说:“让他们都回各自的国家吧,别跟着我受罪“。
名列二○○一年全球竞争力第一的北欧小国芬兰,在全国各个城市,基本上看不到哪条街上有交通警察在维护交通秩序。大凡在芬兰生活过一段时间的人,都会强烈地感受到芬兰人普遍遵纪守法的社会风气,典型的例子,就是即使在深更半夜的空旷街头,也不会有哪个芬兰人闯红灯。自律的素质高到这种程度,委实令人钦羡!
正因为芬兰人有着这样好的社会道德素养,所以,为国家的普遍法制夯实了必备的基础,并为市场经济的健康成长创造了必要土壤,进而打造出全球第一的国际竞争力,将美国这样的世界一流大国也甩到了后头。在世上有哪个国家的国民素质能高到在无人监督甚至无政府管理的情况下也能自律?日本算一个,德国也算一个。
首都师范大学的政法教授房宁在日本曾亲历过一次堵车,那情景足以令全世界震撼:从伊豆半岛到东京的公路上,几万辆车一辆挨一辆,排了一百多公里。那个时间段,几乎所有的车辆都是回东京的,道路右侧堵成一条长龙,而左侧却空出了一条“无车道”,谁要是开到左侧,可以一溜烟地直奔东京。然而,就是没有一辆车插到左侧空荡荡的“无车道”超行。
再来看看二次世界大战期间发生在德国的一个实例。一九四四年冬,盟军已经完成了对德国的合围,法西斯德国败亡在即。那时,德国百姓生活陷入困境,食物短缺,燃料匮乏。由于德国地处中欧,冬天非常寒冷,缺乏燃料可能导致许多居民被冻死,不得已,各地政府只得让市民自己上山砍树,回家生火取暖。
据战前留学被困德国的季羡林教授回忆,德国人是这样砍树的:林业人员先在茫茫林海中搜寻,寻找老弱树和劣质树,并在这些树上画一个红圈,然后让市民去砍伐这些树。“砍伐没有红圈的树,要受到处罚。”问题是,谁来执行处罚?当时的德国,行政管理已名存实亡,公务员已尽数调到前线去了,市内找不到警察,全国基本上已呈现真空状态。但直到战争结束,在全德国也没有发生过一起居民乱砍滥伐的事,他们全都忠实地执行了这个规定。
事隔五十多年后,季羡林谈起这件事时仍感喟不已:德国人“具备了无政府的条件却无无政府的现象。”而这样的奇迹,正是由全民严格自律的高素质创造出来的。
世界各国都在讲要提高国民素质,然而,国民的高素质到底有什么标准?严于自律便是为人素质的最高境界。自律不但是一种道德,也是一种伦理。不论国家的社会性质有何差异,但这一点,却是社会人类的共同准则。
自律作为一种社会道德,虽出自于对自己的真正关爱,但更出自于关爱社会的良心。
自律的本能不会与生俱来,它虽然要靠社会伦理的教化,但更要靠法制的强力规范。意大利西西里岛墨西拿市市长米塞佩.布赞卡,一九九五年八月与妻子外出旅游,让公务车司机开车将他们送到四百公里以外的港口,回来后又让司机接他们回家。意大利消费者协会联合会就此将布赞卡告上法庭,指控他滥用职权,损害了纳税人利益。
二○○三年十月二十一日,意大利最高法庭裁定布赞卡市长与妻子私用公务车属违法行为,以滥用职权罪判处其半年监禁。堂堂一个市的市长,因为用了趟私车,就被判锒铛入狱,法律的严格真的到了“王子犯法与庶民同罪”的地步。前车之覆,后车之鉴,容不得你不严格自律。
中国内地正在加强社会主义法制,并且已取得了显著成效。相信假以时日,国人的自律意识定会普遍增强,自律行为定会蔚然成风。有了全民素质的大提高,则中华的繁荣、崛起、腾飞可期。
美国人,法国人和中国人De故事
一个美国人,一个法国人还有一个中国人走在大沙漠中, 走着走着看到一个瓶子,打开瓶塞后飘出来一个人来,那个人说:"我是神仙,我能满足你们每个人 三个愿望!"
美国人第一个抢着说:"我第一个愿望是要很多的钱." 神仙说:"这个简单,满足你!说说第二个愿望吧." 美国人说:我还要很多的钱!" 神仙满足他的愿望后,美国人又说了他的第三个愿望 :"把我弄回家." 神仙说:"没问题." 于是美国人带着很多的钱回了美国.
神仙又问法国人.
法国人说:"我要美女!" 神仙给了他美女. 法国人又说:我还要美女!" 神仙也满足了他,给了他美女.. 法国人最后说到:"把我送回法国."
神仙把法国人送回国后问中国人要什么. 中国人说:"先来瓶二锅头吧." 神仙给了他.问他第二个愿望是什么. 中国人说:再来一瓶二锅头!" 神仙问他第三个愿望是什么. 中国人说:"我挺想法国人和美国人的, 你把他们都弄回来吧 ”。
法国人和美国人气的不得了,但又无可奈何,三个人只好继续走. 走着走着又看见一个瓶子,打开塞子后又冒出一个人来, 那个人说:"我是刚才那个神仙的徒弟, 法力没他高强, 所以只能满足你们每个人两个愿望."
法国人和美国人合计合计认为先让中国人说为好,免得一会又被他弄回来.
于是中国人说:"那就先来瓶二锅头吧." 神仙满足了他的愿望. 法国人和美国人催促中国人赶快把第二个愿望说出来.
中国人喝完二锅头后不紧不慢地对神仙说:"行了, 没事了,你丫走吧."
美国人和法国人气呼呼的跟着中国人继续跋涉,走着走着又看到一个瓶子,打开瓶塞后又飘出一个人来,那个人说:"我是那个神仙的徒弟的徒弟,我只能满足你们每个人一个愿望!" 美国人急忙抢着说:"我再也不想见到那个中国人了." 神仙说:"好的",然后转头问法国人:“你的呢?“ 法国人急忙说:"我也不想见到那个中国人了"神仙说:"好的.",然后转头问中国人:“你的呢?“中国人说:“他们说的都不算“
于是乎美国人和法国人咬牙切齿的跟着中国人,走着走着又看到一个瓶子,打开瓶塞后又飘出一个人来,那个人说:"我是那个神仙的徒弟的徒弟的徒弟,我只能满足你们三人一个愿望!"
美国人和法国人异口同声的喊道:“那个中国人说的什么都不算“。那个人说:“好的“,于是乎转头问中国人:“你想说什么?“
那个中国人说:“让他们都回各自的国家吧,别跟着我受罪“。
2006年11月27日星期一
MNCs要不要“本土化”
有点老了,很多人的位置又变了,已经物是人非了。
http://www.gemag.com.cn/Content/Article.asp?Aid=1015
MNCs要不要“本土化”
MNCs要不要“本土化”
——危机下的商业平衡术
伴随着中国市场的地位急剧上升,跨国公司与本土经理人之间的矛盾正日益凸现。打破“独立王国”必须“中央集权”,“本土化”就是抗拒“一体化”,这种刚性的二元思维模式往往导致了权力架构的推倒重来以及随后的剧烈动荡
9月11日夜,北京香格里拉酒店后花园内,月光如水,树影婆娑。
张书恒——这位3个月前离职的前Oracle(中文名:甲骨文)中国区总经理正和记者聊着他即将完成的EMBA论文和下一步动向。在此之前,他已经在这个公司工作了14年之久。突然,他的手机响起。短短几分钟的低声交谈结束后,张神情淡定地告诉记者:“Oracle中国刚刚结束了一个秘密会议,Soon Choo(陆纯初)下台了”。至此,历时一年之久的中国高层权争终以两败俱伤而结束。(详情参阅本刊8月号:《Oracle:本土化之殇》)翌日,有媒体刊出大幅报道标题称:“甲骨文中国十年团队一朝散尽”。
不幸的遭遇有时也会惊人的相似。就像一年前的伊莱克斯和微软一样,全球“五大”咨询之一的凯捷、欧洲第一的家居建材供应商欧倍德、工业自动化巨头霍尼韦尔,甚至某些号称“本土化榜样”的跨国公司,也纷纷陷入了过度“本土化”的恐慌与混乱之中。
故事的情节几乎如出一辙:全球董事长CEO莅临中国,感受到了巨大变化;接着,亚太区或者大中国区总部受命迁移上海,组织架构大调整;习惯了自己作决定的中国区总裁不得不事事向上汇报,终于拂袖而去,新上任者一边收拾前任亲信,一边坚决贯彻高层意图;最后业绩下滑,客户抱怨,骨干流失;公司不得不再次寻找替罪羊。
矛盾的突出是因为中国市场地位的急剧提高。过去的中国区总裁是一个“封疆大吏”,现在要摇身变成全球企业矩阵领导中一个很重要的部分。假如说从前跨国公司抱着试探的心态进入中国市场,入乡随俗,只是需要把企业从零做到一定规模,建立合资企业,或者兼并一个国企进行改造,那时候的中国区领导者可以是非常有决断性、竞争性和创造性,甚至拥有某些企业家身上的素质。
今天如果这个跨国公司亚太区的总部已经搬来中国,你管的已经是一个全球性生产基地,或者数一数二的消费市场,甚至全球研发中心之一,中国区的业绩好坏将会直接影响下一季度的财报,作为中国区总裁的任务就不仅是把具体的事情做好,还要加强与总部之间的联系,与全球各个部门的配合,考虑亚洲其他地区的文化意识和市场特点,在总部面前对中国市场的优势和缺点做一个详尽的分析,然后把资源尽量吸引到中国来,将中国融入全球战略的全局中。
执拗的张书恒发誓要在新的位置上证明自己,“我现在谈的都是跨国公司,首先一个条件就是要能独立管理这个公司,要当就当中国区的一把手。”但他过去的合作伙伴兼朋友毕博咨询全球高级副总裁黄辉却请记者转达劝告:“老板越来越不好当了,所以你劝他千万不要当总裁,当总裁更不好当。”
因为环境已经发生了变化。在频繁曝光的人事恩怨和公司政治的背后,凸现的是跨国公司将中国区纳入全球战略“一体化控制”与本土经理人努力保持“自治灵活性”之间的长期博弈。这是一对永恒的矛盾,稍有不慎就将变成一损俱损的零和游戏。问题在于,如何打破这个循环的怪圈?
战略管理大师Prahaland,C.K在.其名著《跨国公司使命》(The Multinational Mission)一书的副题已经给出了出路:“寻求经营当地化与全球一体化之均衡(Balancing Local Demands and Global Vision)”。
显然,不是每个选手都能在平衡木上轻松自如,事实已经证明,仅通过人事洗牌和权力更迭,并不能真正带来稳定和效率。Prahaland,C.K.的建议是:“要进行积极的战略变化,必须从各管理层关键管理人员的思维方式入手而不是从权力结构入手。”
休克疗法
今年上半年,整个中国零售行业最热门的话题不是沃尔玛Vs家乐福,而是来自德国的欧倍德(OBI)“地震”。
首先是3月5日,这家全球第四,欧洲第一的建材超市公司在其德国总部网站上突然发出通知,称其全球执委会成员中国区总裁李凤江从即日起离开欧倍德公司,同时,欧倍德公司创始人及董事长曼弗雷德·毛斯(Manfred Maus)之子马格斯·毛斯(Markus Maus)连升三级,至欧倍德中国总部担任COO一职,代行CEO职权。
4月,曾是李凤江重要助手的华东地区采购总监吴学峰被欧倍德以“旷工”的名义暂停一切工作职位,并冻结其公司电子邮件,随后,欧倍德所有的供应商都收到一封发自欧倍德中国区总部的传真,通知其华东区采购中心10多名员工集体“离职”,欧倍德和这些供应商业务上的往来都将不再通过这些员工来完成。与此同时,德籍管理人士大大增加,除了采购的职务,以前一直由中国人负责的门店也由一些德国人接管,并且待遇大幅提升。
紧接着在5月中下旬,公司另一位高管于剑波在发给公司内部员工的信中声明:“出于个人职业发展选择的原因,我已主动请辞所担任的OBI中国副总裁及所兼任的管理学院常务副院长等职责”,并得到了马格斯·毛斯的批准。
据一位离职中层透露,事实是公司意欲贬职,但是于剑波显然不接受,矛盾集中爆发在5月的某一天。当时于剑波在受到一位人事主管的“百般刁难”后,怒气冲冲的跑到马格斯·毛斯的办公室,用英语对他大声地说,“让我们像男人一样决斗,不要对我使小花样”,直到其他人来打圆场,局面才平息,随后于剑波马上写了辞职信。
作为人事变动的直接后果,欧倍德在华今年二季度的销售额下降了近20%,而采购价格却上升,利润大幅缩水。李在任时制订的“十年百店”开店计划也被搁浅。李凤江时期的副总裁级别高管人员大半已经离职。而中国区采购中心的“集权”管理,连锁超市管理模式和运作流程的规范化,已与总部的标准对接。
让我们再来看看凯捷的故事。2003年,凯捷全球战略架构重新调整,将全球重新划分为9个区域,并重新调整组织机构,缩减管理层数,希望使组织机构更加精简高效。
这一调整影响到亚洲地区,新加坡、香港、台湾的地位被大大降低,凯捷中国开始受到总部新的重视,2003年,公司决定把大中国区总部从香港搬到上海浦东。
但在人事任命上,却出现了让总部为难的情况。当时凯捷在大陆的总经理是土生土长的郑锐——他曾是中国科大少年班的毕业生,1984年留学德国,并在此期间加入SAP,后来成为SAP第一任中国区顾问总监,1997年离开SAP到了安永,并在2000年凯捷收购安永后,成为中国区负责人——而且郑锐手下的顾问和销售也几乎是清一色的大陆人,包括号称SAP“十大高手”的朱永、董陈烈、张进青和毛炯州。由于郑锐推行发展本地客户的思路,2003年凯捷安永总销售额也一度达到了1997年进入中国以来的历史最高点——1600万美元。
问题在于,尽管郑锐做出的成绩不错,但是由于他“是在大陆应聘,而不是总部指派的总经理”,亚太地区的高层对他实际知之甚少,而相反,在亚太地区做公司风险管理的马来西亚人苏启明却和总部一直有频繁的交流,“换句话说,郑锐是‘朝中无人’”,一位原凯捷咨询的资深顾问分析说。
最后胜出的果然是苏启明。随着他被任命为中国区总裁,大批新加坡的管理人员开始空降到中国,而副总裁郑锐认为发展空间受到限制,不久便离开凯捷,出任APP集团的CIO。
郑锐在任时的思路是:“在中国做咨询,没有本土企业支撑就是空中楼阁”,为了争取到更多的本地客户,可以暂时把利润放到第二位。先抢占市场份额,并树立品牌。
在2002年到2003年期间,凯捷在和对手竞标时,价格往往都会稍低一点,而这正是凯捷赢得华润集团、清华紫光和招商银行等几笔大单的重要原因。但这些都明显和新管理层的计划——在中国的签单必须有55%的利润才会去做——相悖,因此在2004年后,凯捷很多竞标的报价都超过了对手,比如争取国内公司辰明纸业的ERP实施时,IBM是七百多万,而凯捷是九百多万,客户自然选择了前者。
另外,郑锐曾经希望在跟随总部做全球客户的中国区业务时,能把赚到的钱部分用于培养中国本地人才,而不是直接把收入上缴总部。但新管理层显然更倾向于通过并购而不是内部培养来快速做大。新管理层虽然接了总部派过来的为东风和日产合资做咨询与实施的大单,但并没有打算把这部分收入用于培训经费上,而是统统归入了亚太总部,“因此不少人感到失望,选择了离开”,一位离职的顾问称。
在收购国内咨询公司远卓之后,凯捷团队一度扩充到200人。但在随后的两个半月内走了80多人。郑锐时期培养的40多名资深顾问只剩下五六人,而做销售的只剩下一人。
不被信任的人
张书恒马上就要从中欧国际工商学院EMBA班毕业了,他那个课题小组的毕业论文就是跨国公司在中国的逆“本土化”。同学们一直要求张书恒执笔。为此,张书恒不得不认真地解剖自己和前雇主公司。
光辉国际咨询公司北京总经理程原相信,这么多跨国公司选择海外的经理人担任中国区总裁一职,有其合理性的一面。在中国,以“封疆大臣”的方式培养出来的高级经理人,目前恐怕还难以胜任矩阵领导的新要求。“让他们在一个更大的范围中去操作,在与总部和地区的协调沟通中,他们缺少足够的经验。”
北京大学光华管理学院教授许德音博士分析称,在中国,总部派来的领导和本地经理层之间的矛盾具有一定的特殊性:跨国公司的竞争优势之一是它培养出来的经理人才是可流动的跨国性人才。在东南亚培养起来的经理人员,调到欧美,只要职位描述清晰,他一样可以正常工作;可是在中国培养起来的经理人一般都不具有标准的统一性。其中很大的一个障碍是“语言”--不是指狭义的语言,而包括文化和思维方式,他们的想法和做法不能和别处的公司沟通,带着很大的地域性。
张书恒指出,由于前两年美国出现了“9.11”事件,加上安然事件,美国公司对规范和稳妥分外重视。加上朗讯贿赂门事件,给跨国公司一个印象——整个中国市场的质量不好,不是真正的市场经济,这其实也造成对中国本土经理人的一些负面影响,Oracle对中国区加强控制也有此考虑。
长于跟本地客户沟通的张书恒承认跟国外上司沟通是他的一个弱项。Oracle亚太区的总裁大卫·威廉姆斯非常赏识张书恒,他们见第一面的时候,张就是做为中国的 TOP Sales(金牌销售)接受其奖励的。但直到去年底,埃里克主动找张谈心,张才部分地谈了对公司“休克疗法”的意见。 “可惜谈得太晚了,而且只有半个多小时。”张不无遗憾地说。而据说,时任Oracle中国区总裁的陆纯初的酒量非常好,又长期和埃里克在同一个楼办公,两人交情非同一般。
全球最著名的高级人才管理服务公司光辉国际拥有一个200万人才的巨大数据库,他们对世界上一些成功企业的领导人做了一个测评,从中挑选出了12万人,把其中最成功的20%拿出来,然后按照他们的行业和职能(比如说CEO、副总裁、总监、经理和主管),对他们的领导成就进行详细的描述。然后拿这个调查结果和最近在中国境内的跨国公司的高层职业经理人的调查进行了比较,两者的差距相当大。
比较显示,中国的职业经理人技术非常好,做事和执行能力很强,从领导方式上说非常决断。比较弱的方面,一个是社会性的行为,能够和人们在一起开放的心态,在团队当中的适应性。另外欠缺的是能够把人们凝聚在一起、激发团队的积极性,把一个很好的思想从模式变成现实在执行过程中的领导能力。中国的职业经理人是比较专家型的、做事的,重效率、适应性比较强的一群人。这群人在国外是哪类人才的素质呢?最低层的主管级人才。在缺乏充分锻炼的前提下,过快地把中国本土经理人提升到一个过高的位置,后果可想而知。
李凤江向来被看作欧倍德进入中国的“开国元勋”。1998年欧倍德以管理咨询公司名义进入中国,启用了曾在德国汉堡大学获得博士学位的李凤江为中国区总裁。那以后的几乎所有的重大战略决策,李凤江都起到了关键的作用。也正因为如此,李凤江进入欧倍德全球最高决策机构,成为7 位执委会成员之一,并成为跨国公司中职位最高的中国本土经理人之一。
但2002年,集团突然停止了对中国市场的投资。官方的说法是因为欧洲本部的业绩不好,但在一些离开欧倍德的员工看来,这其中其实另有隐情。第一个原因是李凤江在中国的做法打破了欧倍德在欧洲经营的家族管理和连锁加盟形式,引起了德国总部的猜忌,其次由于董事长曼弗雷德·毛斯已经年届70,他希望儿子马格斯·毛斯能接替他,如果能接手势头正在上升的中国区,则马格斯·毛斯既有业绩来说服董事会,“又可以赶走越来越难以控制的中国人”。
不管哪一种说法属实,没有总部的投资都意味着“十年百店”计划无法进行下去,李凤江在万般无奈的情况下又设计了一个把欧倍德在华部分优质资产打包,在香港资本市场IPO的计划,以筹措开店资金。并为此在2003年找来了对香港资本市场熟悉的于剑波,任命其为副总裁,兼任公司的管理学院常务副院长。据了解,于剑波曾是中央某位首长的秘书,对金融市场也有相当的业务水平,在上任后,地位仅次于李凤江。
但是这种做法反而进一步加深了总部对中国区的猜疑,而按照一些离职员工的说法,“此时公司一些不受李凤江重用的人,开始把各类中国区‘管理混乱’的言论传播到了总部”,一时间李凤江和总部之间的关系很紧张。据说董事会找李凤江谈过好几次,最终都不欢而散。
三十多岁的李凤江由此产生了去意。2004年初由于合同到期,李决定不再续约,去了另一家德国公司任亚太区总裁,而马格斯·毛斯随后被擢升为中国区的负责人。
42岁的黄辉是国内少有的具有全球化管理能力的经理人。在其18年的海外经历中,4年求学,7年在欧洲,7年在日本。虽然是美国的咨询公司,但是毕博国内的客户80%以上都是本土客户。当需要做一个决策时,毕博一天两天就能做决定,而不少竞争对手由于要层层汇报,往往要三个月才做出决策。
黄辉说,“我从来没有找总部谈判要决策权。和总部沟通其实主要是两点,一是必须让他们看到你业务上的成功,二是对中国区一把手的信任”。
“信任不是说一天两天能够培养起来的,而是在过去多年中,你所有说到的事情都做到了。”黄辉来中国前已经在毕博工作了9年,负责亚太区中最重要的日本业务,日本是全球效益最好的地区。2001年4月,他被派到中国区,8月,他毅然辞掉了日本区的工作。
“当时,不辞掉日本的工作我就不可能有这么多时间在中国发展业务,”他说“虽然这个决定使我进入全球执行委员会晚了一年,但是正确的。”过去三年,毕博在中国的总业务增长了将近30倍。因为中国业务已经基本上了轨道,现在他又被任命为日本和中国业务的负责人,并且进入全球执行委员会。这个委员会全球只有 10人参加。
他眼中国内合格的跨国公司经理人很少,他认为天花板很大程度上是国内的经理人自己造成的,因为他们往往有一种“打工仔”心态。
“打工仔的心态是什么,反正我在你这里,你什么时候不要我了,我再换另外一个地方,就像在工地一样,这个工地做完了以后,我随便两三年又到另外一个地方”,“现在机会这么多,明天猎头公司给我打一个电话,后天又给我打电话,我做你的工作两三年还舒服,工作完了,实在不行业绩不好,我就走了。”
黄辉认为正是这样的心态,使得这些跨国公司对本土的职业经理人非常不看好。在一个巨大的国际公司中工作的时候,要了解它是怎么运作的,它的决策思维怎么样,决策流程怎么样,是需要时间和耐心的。而且要真正能够做得成功的话,必须在公司里培养很大的网络和获得资源支持,而这个网络甚至三年四年都不一定能够建成。
亚太区逼宫中国区
一年前,霍尼韦尔亚太区总部刚刚从新加坡迁到上海的时候,霍尼韦尔中国公司董事长兼总裁阮健平和中国公司执行董事兼总经理宋振宁还踌躇满志。“我们把管理总部放在上海,是为了靠近我们的资源,靠近我们的业务,靠近我们的伙伴,靠近我们的人才。”阮健平毫不掩饰对中国市场的期待。此次亚太总部迁移,主要是把原本在新加坡的霍尼韦尔亚太总部的8到10名高级管理人员迁到上海,包括总裁、人事部、财务部、 IT、法律、公关部的主管等。
但仅仅一年之后,已经物是人非。阮宋两位先后挂冠而去。原德勤管理咨询公司大中华地区总裁沈达理(Shane Tedjarati)成为霍尼韦尔中国区总裁办公室的新主人。沈达理将直接向董事长兼首席执行官DavidCote报告
随着新老板的上台,又一批中层经理人流失。一个未经证实的说法是,霍尼韦尔负责全球市场的老板恰好是以前德勤的高级合伙人,沈达理则正好是其当年的下属。
那些为跨国公司开疆拓土的中国本土经理人当心了,你们的位置也许很快将被来自香港、台湾、新加坡甚至总部的新同事所取代。没错,中国市场的地位更具战略性了,亚太区总部在向这里迁移。但全球化对中国经理人的成长造成了“溢出效应”。
看看摩托罗拉手机部的情况吧。今年初,整个亚太区手机部被重新划分为北亚和南亚。“因为中国市场太大,北亚管理层很容易忘记其他国家。谁会关心香港、新加坡,至于日本和韩国,从来就不是MOTO的天下”,一位前摩托罗拉手机部亚太区高管告诉记者。
于是,北亚中心被安在了和中国区同一个楼里。“北亚区认为中国市场太重要了,越来越关注中国的事,事实上相当于取代了中国区的管理层”。那位前高管直言。
原摩托罗拉全球副总裁兼中国区总经理卢雷的权力被削弱。先是总部派了一位亚太区副总裁来管理中国市场的营销,接着原中国区下设的东南西北四大区都将直接向摩托罗拉手机业务的北亚区汇报。新任北亚区总裁孔祥辉之前曾任手机部台湾分公司的副总裁兼总经理。“孔很看重权力,不愿分太多给下面。而且他跟卢是一个类型的,都是销售强人,非常看重数字。”那位摩托罗拉的前高管说:“卢的情绪确实受到了影响”。
很快,卢雷被宣布调任总部。之后摩托罗拉将不再设立手机业务的中国区总经理,而是分别任命GSM和CDMA两位总经理。前西门子大中华区副总裁任伟光成为GSM总经理,直接向摩托罗拉手机部北亚区总裁孔祥辉汇报工作。
不到两个月,卢雷跳槽NEC担任中国区总裁。同时挖走了两位昔日的得力干将王善全和鲁敢。据传闻,卢的签字费高达100万美元。诺基亚则声称根据多个第三方调查结果,他们已经从摩托罗拉手中夺取中国手机市场第一的宝座。
亚太区的重心下移,打破了中国区正常的权力分配。
陆下课的借口也是因为组织架构调整。去年9月的调整中,Oracle抽去了“中国区”这一次层级,在这一次调整中,抽去了“大中华区”这一层级。 Oracle亚太区的管理层级从4层到3层,最后降到2层。原来大中华区(中国区+台湾区)所属的四个区的董事总经理(MD)都将直接向亚太区负责。“扁平化”的潜台词是“控制”。
在黄辉看来,亚太区这个位置非常微妙,“定位的好坏对中国业务的影响很大”。虽然,很多公司从总部角度已经认识到了中国市场的重要性,投入也不少。但到了亚太区,在运营层面上决策的时候,涉及到切身利益平衡的问题时,中国往往不受重视。“关键是作为中国业务的领导人,能够把你讲出来的东西,在这个公司里面真正的去推动。”
“要想做到亚洲区总裁的位置,至少需要在中国和总部所在国之外两国的经验比较合适,” 光辉国际的程原说。而有这样资格的内地出生的经理人,全球可能也就在十个以内。好消息是,越来越多的亚太区总裁要求必须有中国经验。
平衡的艺术
“失败的跨国公司无非两种类型。一种是拒绝本土化。另一种是过度本土化,而这个趋势更值得注意”,黄辉指出。
当跨国公司本土化到所有模式和做法和中国公司一模一样,实际上就丧失了跨国公司的竞争优势,和品牌形象。伊莱克斯的一些做法,甚至是本土的公司都很难做到。过分本土化使跨国公司的整个管理优势、品牌优势、业务模式的优势,都体现不出来,它的国际资源优势也就丧失了。而关键在于,中国是一个地区市场,这里的成功和全球整体的战略必须是一致的。
战略咨询公司BCG针对16家在华年销售额和出口额都在10亿美金的跨国公司的调研指出,这些公司所面临的重要挑战和忧虑中,排在前两位的是:发展本地的人才和本地管理团队;把中国的运营整合到全球运营体系中。
有家著名公司的中国区总裁在上任初曾宣布,要在三年内以本地人代替中、低层经理职位上的外籍人,并要求所有外籍经理以三年任期为限,且在离职时已培养出本地继任者。而对于高层经理职位,这位总裁的计划是在五至六年内以本地人取代外籍人。他的计划在低层基本得到贯彻,在中层得到部分贯彻,而在高层没有取得进展。
事实上,一个在“本土化”的进程中急需被纠正的误读是:认为在所有经理职位上以本地人替代外籍人,就实现了管理人员的本地化。这种简单化理解导致了许多公司在实现“本土化”进程中的简单化操作。
黄辉认为这直接诱导了本土经理人的急躁心态。“很多人到跨国公司里面,当副总,负责营销也好,负责生产也好,做两三年,从整个公司管理的工作来说,涉及的面只是一部分,很多面还要去学习,这样你才真正能够像总经理一样管一个业务。有些人副总当了一两年,就直接问上面老总,你什么时候走,我何时接你的位置。这是反映到职业经理人基本的道德观念,每个跨国公司都有人力资源发展的一个途径,怎么样使你掌握相应的技能更成熟,到时候人家自动会把你放在这个位置上。”
BCG也为在华跨国公司开列了一份“关键成功因素”清单。而其中第一项就是:在全球层面,拥有一名资深的、高度负责的、有决策权的中国负责人。这一点也得到了光辉国际北京总经理程原的认同。她观察指出“越来越多的跨国公司将最资深、最被看重的经理人送往中国。”聪明的跨国公司,懂得利用制度将本土经理人的冲劲和国际经理人的经验揉合在一起。面对大中华区独特的市场,跨国公司最明智的做法是成立由内地、港台及国际职业经理人共同组成的管理委员会,作为大中华区的最高决策团队,在大中华区CEO的领导下,行使大中华区的经营管理权。柯达大中华区的最高决策层名为CCT(China Core Team),即柯达大中华区核心领导小组,由来自海外、港台、内地的管理者10余人组成,来自不同的职能和业务部门。飞利浦中国最高管理委员会由9人组成,其中三分之一是内地系。
对于本土经理人来说,他们所缺乏的是全球视野,对西方管理文化的深刻理解,以及与总部沟通的能力。因此,海外工作的修炼是提高本土职业经理人管理经营水平的必修课。宝洁中国区总裁罗宏斐无疑是他们的最好榜样。这个1977年加入宝洁的法国人,把他在北非、东欧、俄罗斯等市场历练中学到的经验成功带入了中国市场。
“卢雷的身上还有巨大的潜力,从个人事业发展来说,要成为一个国际级经理人,他应该主动去世界各地融合,带很多经验回来,这样他才会更强壮。他肯定会和今天大不一样”,一位曾与卢雷共事过的前摩托罗拉外籍高管相信。
在黄辉看来,跨国公司上层考察地区工作是有坐标的,不是凭借个人好恶或者单纯的业绩。这个最重要的指标,是“有没有创新地实施全球战略”。有创新,就是全球战略实施过程中,和本土的市场情况有冲突的时候,领导者必须能够提出一个新的战略,并且有能力去说服上层接受,同时有极强的能力把这个战略实施、执行下去。去年毕博总裁来中国两个月之后,就进行了全球调整,黄辉带领毕博在中国做的运营模式、创新管理甚至被移植到了美国。
(文/《环球企业家》□ 本刊记者 鲁娜 黄河 申音|文 出自:2004年10月 总第103期)
http://www.gemag.com.cn/Content/Article.asp?Aid=1015
MNCs要不要“本土化”
MNCs要不要“本土化”
——危机下的商业平衡术
伴随着中国市场的地位急剧上升,跨国公司与本土经理人之间的矛盾正日益凸现。打破“独立王国”必须“中央集权”,“本土化”就是抗拒“一体化”,这种刚性的二元思维模式往往导致了权力架构的推倒重来以及随后的剧烈动荡
9月11日夜,北京香格里拉酒店后花园内,月光如水,树影婆娑。
张书恒——这位3个月前离职的前Oracle(中文名:甲骨文)中国区总经理正和记者聊着他即将完成的EMBA论文和下一步动向。在此之前,他已经在这个公司工作了14年之久。突然,他的手机响起。短短几分钟的低声交谈结束后,张神情淡定地告诉记者:“Oracle中国刚刚结束了一个秘密会议,Soon Choo(陆纯初)下台了”。至此,历时一年之久的中国高层权争终以两败俱伤而结束。(详情参阅本刊8月号:《Oracle:本土化之殇》)翌日,有媒体刊出大幅报道标题称:“甲骨文中国十年团队一朝散尽”。
不幸的遭遇有时也会惊人的相似。就像一年前的伊莱克斯和微软一样,全球“五大”咨询之一的凯捷、欧洲第一的家居建材供应商欧倍德、工业自动化巨头霍尼韦尔,甚至某些号称“本土化榜样”的跨国公司,也纷纷陷入了过度“本土化”的恐慌与混乱之中。
故事的情节几乎如出一辙:全球董事长CEO莅临中国,感受到了巨大变化;接着,亚太区或者大中国区总部受命迁移上海,组织架构大调整;习惯了自己作决定的中国区总裁不得不事事向上汇报,终于拂袖而去,新上任者一边收拾前任亲信,一边坚决贯彻高层意图;最后业绩下滑,客户抱怨,骨干流失;公司不得不再次寻找替罪羊。
矛盾的突出是因为中国市场地位的急剧提高。过去的中国区总裁是一个“封疆大吏”,现在要摇身变成全球企业矩阵领导中一个很重要的部分。假如说从前跨国公司抱着试探的心态进入中国市场,入乡随俗,只是需要把企业从零做到一定规模,建立合资企业,或者兼并一个国企进行改造,那时候的中国区领导者可以是非常有决断性、竞争性和创造性,甚至拥有某些企业家身上的素质。
今天如果这个跨国公司亚太区的总部已经搬来中国,你管的已经是一个全球性生产基地,或者数一数二的消费市场,甚至全球研发中心之一,中国区的业绩好坏将会直接影响下一季度的财报,作为中国区总裁的任务就不仅是把具体的事情做好,还要加强与总部之间的联系,与全球各个部门的配合,考虑亚洲其他地区的文化意识和市场特点,在总部面前对中国市场的优势和缺点做一个详尽的分析,然后把资源尽量吸引到中国来,将中国融入全球战略的全局中。
执拗的张书恒发誓要在新的位置上证明自己,“我现在谈的都是跨国公司,首先一个条件就是要能独立管理这个公司,要当就当中国区的一把手。”但他过去的合作伙伴兼朋友毕博咨询全球高级副总裁黄辉却请记者转达劝告:“老板越来越不好当了,所以你劝他千万不要当总裁,当总裁更不好当。”
因为环境已经发生了变化。在频繁曝光的人事恩怨和公司政治的背后,凸现的是跨国公司将中国区纳入全球战略“一体化控制”与本土经理人努力保持“自治灵活性”之间的长期博弈。这是一对永恒的矛盾,稍有不慎就将变成一损俱损的零和游戏。问题在于,如何打破这个循环的怪圈?
战略管理大师Prahaland,C.K在.其名著《跨国公司使命》(The Multinational Mission)一书的副题已经给出了出路:“寻求经营当地化与全球一体化之均衡(Balancing Local Demands and Global Vision)”。
显然,不是每个选手都能在平衡木上轻松自如,事实已经证明,仅通过人事洗牌和权力更迭,并不能真正带来稳定和效率。Prahaland,C.K.的建议是:“要进行积极的战略变化,必须从各管理层关键管理人员的思维方式入手而不是从权力结构入手。”
休克疗法
今年上半年,整个中国零售行业最热门的话题不是沃尔玛Vs家乐福,而是来自德国的欧倍德(OBI)“地震”。
首先是3月5日,这家全球第四,欧洲第一的建材超市公司在其德国总部网站上突然发出通知,称其全球执委会成员中国区总裁李凤江从即日起离开欧倍德公司,同时,欧倍德公司创始人及董事长曼弗雷德·毛斯(Manfred Maus)之子马格斯·毛斯(Markus Maus)连升三级,至欧倍德中国总部担任COO一职,代行CEO职权。
4月,曾是李凤江重要助手的华东地区采购总监吴学峰被欧倍德以“旷工”的名义暂停一切工作职位,并冻结其公司电子邮件,随后,欧倍德所有的供应商都收到一封发自欧倍德中国区总部的传真,通知其华东区采购中心10多名员工集体“离职”,欧倍德和这些供应商业务上的往来都将不再通过这些员工来完成。与此同时,德籍管理人士大大增加,除了采购的职务,以前一直由中国人负责的门店也由一些德国人接管,并且待遇大幅提升。
紧接着在5月中下旬,公司另一位高管于剑波在发给公司内部员工的信中声明:“出于个人职业发展选择的原因,我已主动请辞所担任的OBI中国副总裁及所兼任的管理学院常务副院长等职责”,并得到了马格斯·毛斯的批准。
据一位离职中层透露,事实是公司意欲贬职,但是于剑波显然不接受,矛盾集中爆发在5月的某一天。当时于剑波在受到一位人事主管的“百般刁难”后,怒气冲冲的跑到马格斯·毛斯的办公室,用英语对他大声地说,“让我们像男人一样决斗,不要对我使小花样”,直到其他人来打圆场,局面才平息,随后于剑波马上写了辞职信。
作为人事变动的直接后果,欧倍德在华今年二季度的销售额下降了近20%,而采购价格却上升,利润大幅缩水。李在任时制订的“十年百店”开店计划也被搁浅。李凤江时期的副总裁级别高管人员大半已经离职。而中国区采购中心的“集权”管理,连锁超市管理模式和运作流程的规范化,已与总部的标准对接。
让我们再来看看凯捷的故事。2003年,凯捷全球战略架构重新调整,将全球重新划分为9个区域,并重新调整组织机构,缩减管理层数,希望使组织机构更加精简高效。
这一调整影响到亚洲地区,新加坡、香港、台湾的地位被大大降低,凯捷中国开始受到总部新的重视,2003年,公司决定把大中国区总部从香港搬到上海浦东。
但在人事任命上,却出现了让总部为难的情况。当时凯捷在大陆的总经理是土生土长的郑锐——他曾是中国科大少年班的毕业生,1984年留学德国,并在此期间加入SAP,后来成为SAP第一任中国区顾问总监,1997年离开SAP到了安永,并在2000年凯捷收购安永后,成为中国区负责人——而且郑锐手下的顾问和销售也几乎是清一色的大陆人,包括号称SAP“十大高手”的朱永、董陈烈、张进青和毛炯州。由于郑锐推行发展本地客户的思路,2003年凯捷安永总销售额也一度达到了1997年进入中国以来的历史最高点——1600万美元。
问题在于,尽管郑锐做出的成绩不错,但是由于他“是在大陆应聘,而不是总部指派的总经理”,亚太地区的高层对他实际知之甚少,而相反,在亚太地区做公司风险管理的马来西亚人苏启明却和总部一直有频繁的交流,“换句话说,郑锐是‘朝中无人’”,一位原凯捷咨询的资深顾问分析说。
最后胜出的果然是苏启明。随着他被任命为中国区总裁,大批新加坡的管理人员开始空降到中国,而副总裁郑锐认为发展空间受到限制,不久便离开凯捷,出任APP集团的CIO。
郑锐在任时的思路是:“在中国做咨询,没有本土企业支撑就是空中楼阁”,为了争取到更多的本地客户,可以暂时把利润放到第二位。先抢占市场份额,并树立品牌。
在2002年到2003年期间,凯捷在和对手竞标时,价格往往都会稍低一点,而这正是凯捷赢得华润集团、清华紫光和招商银行等几笔大单的重要原因。但这些都明显和新管理层的计划——在中国的签单必须有55%的利润才会去做——相悖,因此在2004年后,凯捷很多竞标的报价都超过了对手,比如争取国内公司辰明纸业的ERP实施时,IBM是七百多万,而凯捷是九百多万,客户自然选择了前者。
另外,郑锐曾经希望在跟随总部做全球客户的中国区业务时,能把赚到的钱部分用于培养中国本地人才,而不是直接把收入上缴总部。但新管理层显然更倾向于通过并购而不是内部培养来快速做大。新管理层虽然接了总部派过来的为东风和日产合资做咨询与实施的大单,但并没有打算把这部分收入用于培训经费上,而是统统归入了亚太总部,“因此不少人感到失望,选择了离开”,一位离职的顾问称。
在收购国内咨询公司远卓之后,凯捷团队一度扩充到200人。但在随后的两个半月内走了80多人。郑锐时期培养的40多名资深顾问只剩下五六人,而做销售的只剩下一人。
不被信任的人
张书恒马上就要从中欧国际工商学院EMBA班毕业了,他那个课题小组的毕业论文就是跨国公司在中国的逆“本土化”。同学们一直要求张书恒执笔。为此,张书恒不得不认真地解剖自己和前雇主公司。
光辉国际咨询公司北京总经理程原相信,这么多跨国公司选择海外的经理人担任中国区总裁一职,有其合理性的一面。在中国,以“封疆大臣”的方式培养出来的高级经理人,目前恐怕还难以胜任矩阵领导的新要求。“让他们在一个更大的范围中去操作,在与总部和地区的协调沟通中,他们缺少足够的经验。”
北京大学光华管理学院教授许德音博士分析称,在中国,总部派来的领导和本地经理层之间的矛盾具有一定的特殊性:跨国公司的竞争优势之一是它培养出来的经理人才是可流动的跨国性人才。在东南亚培养起来的经理人员,调到欧美,只要职位描述清晰,他一样可以正常工作;可是在中国培养起来的经理人一般都不具有标准的统一性。其中很大的一个障碍是“语言”--不是指狭义的语言,而包括文化和思维方式,他们的想法和做法不能和别处的公司沟通,带着很大的地域性。
张书恒指出,由于前两年美国出现了“9.11”事件,加上安然事件,美国公司对规范和稳妥分外重视。加上朗讯贿赂门事件,给跨国公司一个印象——整个中国市场的质量不好,不是真正的市场经济,这其实也造成对中国本土经理人的一些负面影响,Oracle对中国区加强控制也有此考虑。
长于跟本地客户沟通的张书恒承认跟国外上司沟通是他的一个弱项。Oracle亚太区的总裁大卫·威廉姆斯非常赏识张书恒,他们见第一面的时候,张就是做为中国的 TOP Sales(金牌销售)接受其奖励的。但直到去年底,埃里克主动找张谈心,张才部分地谈了对公司“休克疗法”的意见。 “可惜谈得太晚了,而且只有半个多小时。”张不无遗憾地说。而据说,时任Oracle中国区总裁的陆纯初的酒量非常好,又长期和埃里克在同一个楼办公,两人交情非同一般。
全球最著名的高级人才管理服务公司光辉国际拥有一个200万人才的巨大数据库,他们对世界上一些成功企业的领导人做了一个测评,从中挑选出了12万人,把其中最成功的20%拿出来,然后按照他们的行业和职能(比如说CEO、副总裁、总监、经理和主管),对他们的领导成就进行详细的描述。然后拿这个调查结果和最近在中国境内的跨国公司的高层职业经理人的调查进行了比较,两者的差距相当大。
比较显示,中国的职业经理人技术非常好,做事和执行能力很强,从领导方式上说非常决断。比较弱的方面,一个是社会性的行为,能够和人们在一起开放的心态,在团队当中的适应性。另外欠缺的是能够把人们凝聚在一起、激发团队的积极性,把一个很好的思想从模式变成现实在执行过程中的领导能力。中国的职业经理人是比较专家型的、做事的,重效率、适应性比较强的一群人。这群人在国外是哪类人才的素质呢?最低层的主管级人才。在缺乏充分锻炼的前提下,过快地把中国本土经理人提升到一个过高的位置,后果可想而知。
李凤江向来被看作欧倍德进入中国的“开国元勋”。1998年欧倍德以管理咨询公司名义进入中国,启用了曾在德国汉堡大学获得博士学位的李凤江为中国区总裁。那以后的几乎所有的重大战略决策,李凤江都起到了关键的作用。也正因为如此,李凤江进入欧倍德全球最高决策机构,成为7 位执委会成员之一,并成为跨国公司中职位最高的中国本土经理人之一。
但2002年,集团突然停止了对中国市场的投资。官方的说法是因为欧洲本部的业绩不好,但在一些离开欧倍德的员工看来,这其中其实另有隐情。第一个原因是李凤江在中国的做法打破了欧倍德在欧洲经营的家族管理和连锁加盟形式,引起了德国总部的猜忌,其次由于董事长曼弗雷德·毛斯已经年届70,他希望儿子马格斯·毛斯能接替他,如果能接手势头正在上升的中国区,则马格斯·毛斯既有业绩来说服董事会,“又可以赶走越来越难以控制的中国人”。
不管哪一种说法属实,没有总部的投资都意味着“十年百店”计划无法进行下去,李凤江在万般无奈的情况下又设计了一个把欧倍德在华部分优质资产打包,在香港资本市场IPO的计划,以筹措开店资金。并为此在2003年找来了对香港资本市场熟悉的于剑波,任命其为副总裁,兼任公司的管理学院常务副院长。据了解,于剑波曾是中央某位首长的秘书,对金融市场也有相当的业务水平,在上任后,地位仅次于李凤江。
但是这种做法反而进一步加深了总部对中国区的猜疑,而按照一些离职员工的说法,“此时公司一些不受李凤江重用的人,开始把各类中国区‘管理混乱’的言论传播到了总部”,一时间李凤江和总部之间的关系很紧张。据说董事会找李凤江谈过好几次,最终都不欢而散。
三十多岁的李凤江由此产生了去意。2004年初由于合同到期,李决定不再续约,去了另一家德国公司任亚太区总裁,而马格斯·毛斯随后被擢升为中国区的负责人。
42岁的黄辉是国内少有的具有全球化管理能力的经理人。在其18年的海外经历中,4年求学,7年在欧洲,7年在日本。虽然是美国的咨询公司,但是毕博国内的客户80%以上都是本土客户。当需要做一个决策时,毕博一天两天就能做决定,而不少竞争对手由于要层层汇报,往往要三个月才做出决策。
黄辉说,“我从来没有找总部谈判要决策权。和总部沟通其实主要是两点,一是必须让他们看到你业务上的成功,二是对中国区一把手的信任”。
“信任不是说一天两天能够培养起来的,而是在过去多年中,你所有说到的事情都做到了。”黄辉来中国前已经在毕博工作了9年,负责亚太区中最重要的日本业务,日本是全球效益最好的地区。2001年4月,他被派到中国区,8月,他毅然辞掉了日本区的工作。
“当时,不辞掉日本的工作我就不可能有这么多时间在中国发展业务,”他说“虽然这个决定使我进入全球执行委员会晚了一年,但是正确的。”过去三年,毕博在中国的总业务增长了将近30倍。因为中国业务已经基本上了轨道,现在他又被任命为日本和中国业务的负责人,并且进入全球执行委员会。这个委员会全球只有 10人参加。
他眼中国内合格的跨国公司经理人很少,他认为天花板很大程度上是国内的经理人自己造成的,因为他们往往有一种“打工仔”心态。
“打工仔的心态是什么,反正我在你这里,你什么时候不要我了,我再换另外一个地方,就像在工地一样,这个工地做完了以后,我随便两三年又到另外一个地方”,“现在机会这么多,明天猎头公司给我打一个电话,后天又给我打电话,我做你的工作两三年还舒服,工作完了,实在不行业绩不好,我就走了。”
黄辉认为正是这样的心态,使得这些跨国公司对本土的职业经理人非常不看好。在一个巨大的国际公司中工作的时候,要了解它是怎么运作的,它的决策思维怎么样,决策流程怎么样,是需要时间和耐心的。而且要真正能够做得成功的话,必须在公司里培养很大的网络和获得资源支持,而这个网络甚至三年四年都不一定能够建成。
亚太区逼宫中国区
一年前,霍尼韦尔亚太区总部刚刚从新加坡迁到上海的时候,霍尼韦尔中国公司董事长兼总裁阮健平和中国公司执行董事兼总经理宋振宁还踌躇满志。“我们把管理总部放在上海,是为了靠近我们的资源,靠近我们的业务,靠近我们的伙伴,靠近我们的人才。”阮健平毫不掩饰对中国市场的期待。此次亚太总部迁移,主要是把原本在新加坡的霍尼韦尔亚太总部的8到10名高级管理人员迁到上海,包括总裁、人事部、财务部、 IT、法律、公关部的主管等。
但仅仅一年之后,已经物是人非。阮宋两位先后挂冠而去。原德勤管理咨询公司大中华地区总裁沈达理(Shane Tedjarati)成为霍尼韦尔中国区总裁办公室的新主人。沈达理将直接向董事长兼首席执行官DavidCote报告
随着新老板的上台,又一批中层经理人流失。一个未经证实的说法是,霍尼韦尔负责全球市场的老板恰好是以前德勤的高级合伙人,沈达理则正好是其当年的下属。
那些为跨国公司开疆拓土的中国本土经理人当心了,你们的位置也许很快将被来自香港、台湾、新加坡甚至总部的新同事所取代。没错,中国市场的地位更具战略性了,亚太区总部在向这里迁移。但全球化对中国经理人的成长造成了“溢出效应”。
看看摩托罗拉手机部的情况吧。今年初,整个亚太区手机部被重新划分为北亚和南亚。“因为中国市场太大,北亚管理层很容易忘记其他国家。谁会关心香港、新加坡,至于日本和韩国,从来就不是MOTO的天下”,一位前摩托罗拉手机部亚太区高管告诉记者。
于是,北亚中心被安在了和中国区同一个楼里。“北亚区认为中国市场太重要了,越来越关注中国的事,事实上相当于取代了中国区的管理层”。那位前高管直言。
原摩托罗拉全球副总裁兼中国区总经理卢雷的权力被削弱。先是总部派了一位亚太区副总裁来管理中国市场的营销,接着原中国区下设的东南西北四大区都将直接向摩托罗拉手机业务的北亚区汇报。新任北亚区总裁孔祥辉之前曾任手机部台湾分公司的副总裁兼总经理。“孔很看重权力,不愿分太多给下面。而且他跟卢是一个类型的,都是销售强人,非常看重数字。”那位摩托罗拉的前高管说:“卢的情绪确实受到了影响”。
很快,卢雷被宣布调任总部。之后摩托罗拉将不再设立手机业务的中国区总经理,而是分别任命GSM和CDMA两位总经理。前西门子大中华区副总裁任伟光成为GSM总经理,直接向摩托罗拉手机部北亚区总裁孔祥辉汇报工作。
不到两个月,卢雷跳槽NEC担任中国区总裁。同时挖走了两位昔日的得力干将王善全和鲁敢。据传闻,卢的签字费高达100万美元。诺基亚则声称根据多个第三方调查结果,他们已经从摩托罗拉手中夺取中国手机市场第一的宝座。
亚太区的重心下移,打破了中国区正常的权力分配。
陆下课的借口也是因为组织架构调整。去年9月的调整中,Oracle抽去了“中国区”这一次层级,在这一次调整中,抽去了“大中华区”这一层级。 Oracle亚太区的管理层级从4层到3层,最后降到2层。原来大中华区(中国区+台湾区)所属的四个区的董事总经理(MD)都将直接向亚太区负责。“扁平化”的潜台词是“控制”。
在黄辉看来,亚太区这个位置非常微妙,“定位的好坏对中国业务的影响很大”。虽然,很多公司从总部角度已经认识到了中国市场的重要性,投入也不少。但到了亚太区,在运营层面上决策的时候,涉及到切身利益平衡的问题时,中国往往不受重视。“关键是作为中国业务的领导人,能够把你讲出来的东西,在这个公司里面真正的去推动。”
“要想做到亚洲区总裁的位置,至少需要在中国和总部所在国之外两国的经验比较合适,” 光辉国际的程原说。而有这样资格的内地出生的经理人,全球可能也就在十个以内。好消息是,越来越多的亚太区总裁要求必须有中国经验。
平衡的艺术
“失败的跨国公司无非两种类型。一种是拒绝本土化。另一种是过度本土化,而这个趋势更值得注意”,黄辉指出。
当跨国公司本土化到所有模式和做法和中国公司一模一样,实际上就丧失了跨国公司的竞争优势,和品牌形象。伊莱克斯的一些做法,甚至是本土的公司都很难做到。过分本土化使跨国公司的整个管理优势、品牌优势、业务模式的优势,都体现不出来,它的国际资源优势也就丧失了。而关键在于,中国是一个地区市场,这里的成功和全球整体的战略必须是一致的。
战略咨询公司BCG针对16家在华年销售额和出口额都在10亿美金的跨国公司的调研指出,这些公司所面临的重要挑战和忧虑中,排在前两位的是:发展本地的人才和本地管理团队;把中国的运营整合到全球运营体系中。
有家著名公司的中国区总裁在上任初曾宣布,要在三年内以本地人代替中、低层经理职位上的外籍人,并要求所有外籍经理以三年任期为限,且在离职时已培养出本地继任者。而对于高层经理职位,这位总裁的计划是在五至六年内以本地人取代外籍人。他的计划在低层基本得到贯彻,在中层得到部分贯彻,而在高层没有取得进展。
事实上,一个在“本土化”的进程中急需被纠正的误读是:认为在所有经理职位上以本地人替代外籍人,就实现了管理人员的本地化。这种简单化理解导致了许多公司在实现“本土化”进程中的简单化操作。
黄辉认为这直接诱导了本土经理人的急躁心态。“很多人到跨国公司里面,当副总,负责营销也好,负责生产也好,做两三年,从整个公司管理的工作来说,涉及的面只是一部分,很多面还要去学习,这样你才真正能够像总经理一样管一个业务。有些人副总当了一两年,就直接问上面老总,你什么时候走,我何时接你的位置。这是反映到职业经理人基本的道德观念,每个跨国公司都有人力资源发展的一个途径,怎么样使你掌握相应的技能更成熟,到时候人家自动会把你放在这个位置上。”
BCG也为在华跨国公司开列了一份“关键成功因素”清单。而其中第一项就是:在全球层面,拥有一名资深的、高度负责的、有决策权的中国负责人。这一点也得到了光辉国际北京总经理程原的认同。她观察指出“越来越多的跨国公司将最资深、最被看重的经理人送往中国。”聪明的跨国公司,懂得利用制度将本土经理人的冲劲和国际经理人的经验揉合在一起。面对大中华区独特的市场,跨国公司最明智的做法是成立由内地、港台及国际职业经理人共同组成的管理委员会,作为大中华区的最高决策团队,在大中华区CEO的领导下,行使大中华区的经营管理权。柯达大中华区的最高决策层名为CCT(China Core Team),即柯达大中华区核心领导小组,由来自海外、港台、内地的管理者10余人组成,来自不同的职能和业务部门。飞利浦中国最高管理委员会由9人组成,其中三分之一是内地系。
对于本土经理人来说,他们所缺乏的是全球视野,对西方管理文化的深刻理解,以及与总部沟通的能力。因此,海外工作的修炼是提高本土职业经理人管理经营水平的必修课。宝洁中国区总裁罗宏斐无疑是他们的最好榜样。这个1977年加入宝洁的法国人,把他在北非、东欧、俄罗斯等市场历练中学到的经验成功带入了中国市场。
“卢雷的身上还有巨大的潜力,从个人事业发展来说,要成为一个国际级经理人,他应该主动去世界各地融合,带很多经验回来,这样他才会更强壮。他肯定会和今天大不一样”,一位曾与卢雷共事过的前摩托罗拉外籍高管相信。
在黄辉看来,跨国公司上层考察地区工作是有坐标的,不是凭借个人好恶或者单纯的业绩。这个最重要的指标,是“有没有创新地实施全球战略”。有创新,就是全球战略实施过程中,和本土的市场情况有冲突的时候,领导者必须能够提出一个新的战略,并且有能力去说服上层接受,同时有极强的能力把这个战略实施、执行下去。去年毕博总裁来中国两个月之后,就进行了全球调整,黄辉带领毕博在中国做的运营模式、创新管理甚至被移植到了美国。
(文/《环球企业家》□ 本刊记者 鲁娜 黄河 申音|文 出自:2004年10月 总第103期)
2006年11月25日星期六
爱生活,爱土豆
爱生活,爱土豆
from CEConline
饭也土豆,菜也土豆。
真正了解土豆,就不会认为这是一句简单的广告词的套用。用迈克尔・波伦在畅销书《当欲望遭遇植物》中的话说,"土豆的故事是个悲喜剧!"
土豆蒙冤
上帝不认可土豆。
上帝的子民因为从未在《圣经》中看到过土豆这一名词,认为这是不可以吃的食物。与被上帝推崇的苹果相比,土豆起源于贫瘠、低夜温、干燥、短日的环境,加之外表不讨人喜欢,因此盛行这样一种说法:"苹果地位有多高,土豆就有多低"。
欧洲1765年的巨著《百科全书》记载:土豆实在不是一种令人愉快的食物。巴黎美食家们甚至不能容忍这样可鄙的食物出现在高级餐桌上,因为"它只适合粗糙的口味和结实的胃"。
伟大之业
人类如此不负责任地将植物划为三六九等,天生卑贱的土豆,在幽暗的地下,怀抱着灰蒙蒙的土壤,曾经想过就这样终其一生。 然而, "时势造英雄",西班牙人首先成就了土豆。16世纪,西班牙的入侵者发现印第安人在海拔一万英尺以上的高山上种植土豆,并以此为生。也许出于好奇,在掠夺黄金的同时捎带了些土豆,同时侮辱地称其为"可以吃的石头"。西班牙人做梦也想不到的是,就是这不起眼的"石头"治疗了他们因长期航海缺少维生素C所造成的坏血病。与不太光荣的入侵相比,西班牙人的此行在历史上多了一项光荣责任:将土豆传到了欧洲。
从家乡秘鲁来到欧洲,卑微的土豆在18世纪40年代著名的爱尔兰大饥荒时体现了自己超凡脱俗的价值。那次由于土豆的歉收而导致爱尔兰人大量移民的史实,令每个爱尔兰人都耳熟能详:"因为土豆没了,人民饿死了,没死的都走了"。
为土豆平反
土豆的价值逐渐被欧洲乃至全世界认可。这种认可或许可从以下史实中得到证实:
・爱尔兰人说,"世界上有两样东西开不得玩笑。一,婚姻;二,土豆。"史学家说, "土豆改变了欧洲。"
・德国人感谢普鲁士国王弗里德里希普及了土豆,于是在他的的墓前摆放土豆祭奠。
・恩格斯把马铃薯的出现和使用铁器并重。
・德国人建立土豆博物馆介绍土豆的悲喜历史。并且在东部和南部将选美产生的美丽女孩称为"土豆皇后"。
・联合国最近一项调查表明,到2100年,全世界人口将增加到105忆。科学家认为,到那时,最有可能帮助人类读过危机的是貌不惊人的土豆。
・英国土豆理事会甚至因为英文辞典中"懒人"的说法借用土豆一词(couch potato)强烈要求将其从牛津字典中删除,因为其严重损害了土豆的美好形象。
土豆的名字也开始有了转变。德国人称"地梨";法国人称"地下的苹果";印第安人则直接称其为"爸爸"。
从"可以吃的石头"到"爸爸",土豆就这样默默包容着人类贯有的轻率。
饭也土豆,菜也土豆
营养学家称:一斤土豆的营养价值相当于四斤苹果。矿物质比一般谷类粮食高一到二倍,并含有丰富的维生素,是可以使人快乐的食物。并且证实了土豆可以外涂、可以入药、还可以减肥的特殊功效。一个成年人每餐食用一杯牛奶加半斤鲜薯就可以满足全天所需营养。
在营养学家的带动下,西方很多国家开始将土豆作为主食,并且副食中也无孔不入,沙拉、浓汤、零食。真正开始了"饭也土豆,菜也土豆"的生活。
在禽流感猖狂的今天,别在"小鸡炖蘑菇"和"啤酒鸭"旁徘徊了,因为我们有充足的理由热爱土豆!
――Ivy Hu
from CEConline
饭也土豆,菜也土豆。
真正了解土豆,就不会认为这是一句简单的广告词的套用。用迈克尔・波伦在畅销书《当欲望遭遇植物》中的话说,"土豆的故事是个悲喜剧!"
土豆蒙冤
上帝不认可土豆。
上帝的子民因为从未在《圣经》中看到过土豆这一名词,认为这是不可以吃的食物。与被上帝推崇的苹果相比,土豆起源于贫瘠、低夜温、干燥、短日的环境,加之外表不讨人喜欢,因此盛行这样一种说法:"苹果地位有多高,土豆就有多低"。
欧洲1765年的巨著《百科全书》记载:土豆实在不是一种令人愉快的食物。巴黎美食家们甚至不能容忍这样可鄙的食物出现在高级餐桌上,因为"它只适合粗糙的口味和结实的胃"。
伟大之业
人类如此不负责任地将植物划为三六九等,天生卑贱的土豆,在幽暗的地下,怀抱着灰蒙蒙的土壤,曾经想过就这样终其一生。 然而, "时势造英雄",西班牙人首先成就了土豆。16世纪,西班牙的入侵者发现印第安人在海拔一万英尺以上的高山上种植土豆,并以此为生。也许出于好奇,在掠夺黄金的同时捎带了些土豆,同时侮辱地称其为"可以吃的石头"。西班牙人做梦也想不到的是,就是这不起眼的"石头"治疗了他们因长期航海缺少维生素C所造成的坏血病。与不太光荣的入侵相比,西班牙人的此行在历史上多了一项光荣责任:将土豆传到了欧洲。
从家乡秘鲁来到欧洲,卑微的土豆在18世纪40年代著名的爱尔兰大饥荒时体现了自己超凡脱俗的价值。那次由于土豆的歉收而导致爱尔兰人大量移民的史实,令每个爱尔兰人都耳熟能详:"因为土豆没了,人民饿死了,没死的都走了"。
为土豆平反
土豆的价值逐渐被欧洲乃至全世界认可。这种认可或许可从以下史实中得到证实:
・爱尔兰人说,"世界上有两样东西开不得玩笑。一,婚姻;二,土豆。"史学家说, "土豆改变了欧洲。"
・德国人感谢普鲁士国王弗里德里希普及了土豆,于是在他的的墓前摆放土豆祭奠。
・恩格斯把马铃薯的出现和使用铁器并重。
・德国人建立土豆博物馆介绍土豆的悲喜历史。并且在东部和南部将选美产生的美丽女孩称为"土豆皇后"。
・联合国最近一项调查表明,到2100年,全世界人口将增加到105忆。科学家认为,到那时,最有可能帮助人类读过危机的是貌不惊人的土豆。
・英国土豆理事会甚至因为英文辞典中"懒人"的说法借用土豆一词(couch potato)强烈要求将其从牛津字典中删除,因为其严重损害了土豆的美好形象。
土豆的名字也开始有了转变。德国人称"地梨";法国人称"地下的苹果";印第安人则直接称其为"爸爸"。
从"可以吃的石头"到"爸爸",土豆就这样默默包容着人类贯有的轻率。
饭也土豆,菜也土豆
营养学家称:一斤土豆的营养价值相当于四斤苹果。矿物质比一般谷类粮食高一到二倍,并含有丰富的维生素,是可以使人快乐的食物。并且证实了土豆可以外涂、可以入药、还可以减肥的特殊功效。一个成年人每餐食用一杯牛奶加半斤鲜薯就可以满足全天所需营养。
在营养学家的带动下,西方很多国家开始将土豆作为主食,并且副食中也无孔不入,沙拉、浓汤、零食。真正开始了"饭也土豆,菜也土豆"的生活。
在禽流感猖狂的今天,别在"小鸡炖蘑菇"和"啤酒鸭"旁徘徊了,因为我们有充足的理由热爱土豆!
――Ivy Hu
牛奶好还是酸奶好?
牛奶好还是酸奶好?
http://www.nanfangdaily.com.cn/jj/20050414/sh/200504110102.asp
21世纪经济报道 2005-04-11 17:00:07
营养信箱
西木
酸奶比牛奶好,但最好的是豆浆,尤其对于中国人。
牛奶是给小牛准备的,连成年的牛也不能很好吸收,何况成人呢。事实上,成人连人奶都吸收不好,又何况牛奶。
牛奶中含有乳糖,需要乳糖酶分解吸收。而世界上超过三分之二的人缺乏乳糖酶,我们中国人更有80%以上缺乏乳糖酶。
地球上,只有居住在阿尔卑斯山以北的荷兰人、丹麦人和瑞典人等民族有充足的乳糖酶,因为这个地区的人缺乏日照,因而缺乏维生素D,影响钙的吸收。为了避免软骨病,他们的祖先通过喝牛奶,用乳糖代替维生素D来吸收奶中的钙。
中国有充足的光照,更有富含钙的大豆和深绿色多叶蔬菜,所以我们的祖先没有通过喝牛奶才能获得钙的压力。正因为如此,中国传统食物中几乎没有奶制品。
把牛奶发酵制成酸奶,部分乳糖分解成半乳糖或葡萄糖,所以酸奶的血糖指数(36)比牛奶的(27)高。但是酸奶的吸收率比牛奶高,尤其对于那些缺乏乳糖酶的人。和牛奶相比,酸奶中的钙没有减少,另外多了乳酸菌。乳酸菌既可以帮助奶中钙的吸收,又可以增加肠道中的好菌。
没有乳糖酶的人喝牛奶,不但不能消化乳糖,也不能有效吸收奶中的钙。没有消化的乳糖累积在肠道里,会发酵并产生气体,引起腹胀或腹泻。
牛奶中并不含有在其它动植物中找不到的营养成分。牛奶含钙不少,但镁的含量较低。而钙和镁通常共同发生作用(2比1),以增加吸收,保持平衡,维护心脑健康。所以,由于乳糖酶以及镁的缺乏,实际上喝牛奶钙的净吸收率并不高。
植物中大豆的钙和镁的含量都很丰富,所以喝豆浆钙的净吸收率比喝牛奶更高;对于那些缺乏乳糖酶的人更是如此。大豆和豆浆的血糖指数(18)比牛奶的(27)要低;大豆中的低聚糖是肠道好菌(双歧杆菌)的食粮。另外,大豆含有丰富的优质蛋白、卵磷脂、异黄酮以及多种维生素和矿物质。
2001年,美国食品药品监督局(FDA)组织十佳食品评选,大豆夺了冠军,成为食品之冠,营养之花。所以,多吃大豆,多喝豆浆,可以补钙又补镁,不得软骨病或骨质疏松,不失眠,营养健康。
牛奶是人体第一号食物过敏原。牛奶中含有多种激素,以促进小牛在头几个月的快速成长,但它们对人体未必适用,甚至有害。人喝牛奶,并不能增加产人奶。牛奶中含有一种蛋白,叫牛血清白蛋白(BSA)。越来越多的研究表明,儿童糖尿病与对这种蛋白的过敏有关。英国的牛奶销售委员会已经关门。科学家建议,婴儿在出生后六个月内不要吃乳制品。
总之,要少喝牛奶,多喝酸奶,最好喝豆浆。记住,不要加糖,糖是慢性毒品。牛奶会使大部分中国人拉肚子,而大豆可以强壮中国人。
(有关营养健康方面的疑问,欢迎来邮西木博士营养信箱:doctorjohn@163.com)
http://www.nanfangdaily.com.cn/jj/20050414/sh/200504110102.asp
21世纪经济报道 2005-04-11 17:00:07
营养信箱
西木
酸奶比牛奶好,但最好的是豆浆,尤其对于中国人。
牛奶是给小牛准备的,连成年的牛也不能很好吸收,何况成人呢。事实上,成人连人奶都吸收不好,又何况牛奶。
牛奶中含有乳糖,需要乳糖酶分解吸收。而世界上超过三分之二的人缺乏乳糖酶,我们中国人更有80%以上缺乏乳糖酶。
地球上,只有居住在阿尔卑斯山以北的荷兰人、丹麦人和瑞典人等民族有充足的乳糖酶,因为这个地区的人缺乏日照,因而缺乏维生素D,影响钙的吸收。为了避免软骨病,他们的祖先通过喝牛奶,用乳糖代替维生素D来吸收奶中的钙。
中国有充足的光照,更有富含钙的大豆和深绿色多叶蔬菜,所以我们的祖先没有通过喝牛奶才能获得钙的压力。正因为如此,中国传统食物中几乎没有奶制品。
把牛奶发酵制成酸奶,部分乳糖分解成半乳糖或葡萄糖,所以酸奶的血糖指数(36)比牛奶的(27)高。但是酸奶的吸收率比牛奶高,尤其对于那些缺乏乳糖酶的人。和牛奶相比,酸奶中的钙没有减少,另外多了乳酸菌。乳酸菌既可以帮助奶中钙的吸收,又可以增加肠道中的好菌。
没有乳糖酶的人喝牛奶,不但不能消化乳糖,也不能有效吸收奶中的钙。没有消化的乳糖累积在肠道里,会发酵并产生气体,引起腹胀或腹泻。
牛奶中并不含有在其它动植物中找不到的营养成分。牛奶含钙不少,但镁的含量较低。而钙和镁通常共同发生作用(2比1),以增加吸收,保持平衡,维护心脑健康。所以,由于乳糖酶以及镁的缺乏,实际上喝牛奶钙的净吸收率并不高。
植物中大豆的钙和镁的含量都很丰富,所以喝豆浆钙的净吸收率比喝牛奶更高;对于那些缺乏乳糖酶的人更是如此。大豆和豆浆的血糖指数(18)比牛奶的(27)要低;大豆中的低聚糖是肠道好菌(双歧杆菌)的食粮。另外,大豆含有丰富的优质蛋白、卵磷脂、异黄酮以及多种维生素和矿物质。
2001年,美国食品药品监督局(FDA)组织十佳食品评选,大豆夺了冠军,成为食品之冠,营养之花。所以,多吃大豆,多喝豆浆,可以补钙又补镁,不得软骨病或骨质疏松,不失眠,营养健康。
牛奶是人体第一号食物过敏原。牛奶中含有多种激素,以促进小牛在头几个月的快速成长,但它们对人体未必适用,甚至有害。人喝牛奶,并不能增加产人奶。牛奶中含有一种蛋白,叫牛血清白蛋白(BSA)。越来越多的研究表明,儿童糖尿病与对这种蛋白的过敏有关。英国的牛奶销售委员会已经关门。科学家建议,婴儿在出生后六个月内不要吃乳制品。
总之,要少喝牛奶,多喝酸奶,最好喝豆浆。记住,不要加糖,糖是慢性毒品。牛奶会使大部分中国人拉肚子,而大豆可以强壮中国人。
(有关营养健康方面的疑问,欢迎来邮西木博士营养信箱:doctorjohn@163.com)
about dogs slaughter @China
this is the link, you can take a visit.
who is right? or say, political correct?
I do not know.
http://www.care2.com/c2c/share/detail/213855
who is right? or say, political correct?
I do not know.
http://www.care2.com/c2c/share/detail/213855
2006年11月24日星期五
films and english,加勒比海盗2;16条街区;汉尼拔;乱世倾情
16 Blocks(16条街区), bruce willis, mos def, david korse
加勒比海盗2,
Hannibal,战争之父汉尼拔;想不到突尼斯(迦太基)也曾经如此强大过。
Battle of the Brave,乱世倾情;背景:18世纪英法争夺之下的加拿大
I hope you are doing well and everything worked out like it was supposed to.
一切顺利,万事如意?
加勒比海盗2,
Hannibal,战争之父汉尼拔;想不到突尼斯(迦太基)也曾经如此强大过。
Battle of the Brave,乱世倾情;背景:18世纪英法争夺之下的加拿大
I hope you are doing well and everything worked out like it was supposed to.
一切顺利,万事如意?
2006年11月22日星期三
two films
two films
"the break-up" by Jennifer Anistion and Vince Vaughn
分手男女
then
The Fast and the Furious: Tokyo Drift
速度与激情3:东京漂移
"the break-up" by Jennifer Anistion and Vince Vaughn
分手男女
then
The Fast and the Furious: Tokyo Drift
速度与激情3:东京漂移
2006年11月17日星期五
Milton Friedman, Leading Economist, Dies at 94
http://www.nytimes.com/2006/11/17/business/17friedman.html?hp&ex=1163739600&en=0ff56cd97f98225b&ei=5094&partner=homepage
桥畔垂杨下碧溪,君家元住北桥西;来时不似人间世,日暖花香山鸟啼。
http://www.ftchinese.com/sc/story.jsp?id=001007948
金融时报
著名美国经济学家米尔顿•弗里德曼(Milton Friedman)2006年11月16日去世,享年94岁。他是最后一位既家喻户晓又拥有最高专业成就的伟大经济学家。在这方面,人们常常将他与约翰•梅纳德•凯恩斯(John Maynard Keynes)相提并论。弗里德曼始终对凯恩斯心怀敬意,尽管他本人在某种程度上已经取代了凯恩斯。
此外,与许多著名经济学家不同,弗里德曼赢得诺贝尔经济学奖的学术文献与他在报刊上发表的文章之间,保持了连贯性。1966年至1984年间,他每隔两周为《新闻周刊》(Newsweek)撰写的专栏,成为运用经济分析阐明当下事件的典范。
他的赞赏者与批评者均指出,他的世界观本质上颇为简单:坚定信仰个人自由,深信自由市场是协调个人活动、实现共同富裕的最佳途径。
张五常
http://blog.sina.com.cn/u/47841af7010005bs
二十世纪后期举世都向自由市场那方向走,好些朋友认为佛利民是主要的影响人物。佛老则认为自己毫无影响力,只是时势造英雄。他是太客气了。二十世纪下半部是历史上一个大时代转变。一个个子不高的人站在那里,不卖账,不哗众取宠,半步不移。但上苍帮助了他。上苍授予他无与伦比的天赋与耐力,使他能在理论、历史、数学、统计等学问上尽达一流,而同样重要的,是他语言表达的清晰也百年仅见。
University of Chicago
http://www-news.uchicago.edu/releases/06/061116.friedman.shtml
Professor Emeritus Milton Friedman dies at 94
Stanford University
http://news-service.stanford.edu/news/2006/november29/friedman-112906.html
Economist Milton Friedman, Nobel laureate and Hoover Institution fellow, dead at 94
"Today Stanford has lost a great scholar and friend, and our country has lost one of its leading economists," Stanford President John L. Hennessy said. "Dr. Friedman's ability to explain complicated economic theories has had a profound impact beyond the university. We will miss his candor and intelligence, but we are quite certain that his insights will live for generations."
桥畔垂杨下碧溪,君家元住北桥西;来时不似人间世,日暖花香山鸟啼。
http://www.ftchinese.com/sc/story.jsp?id=001007948
金融时报
著名美国经济学家米尔顿•弗里德曼(Milton Friedman)2006年11月16日去世,享年94岁。他是最后一位既家喻户晓又拥有最高专业成就的伟大经济学家。在这方面,人们常常将他与约翰•梅纳德•凯恩斯(John Maynard Keynes)相提并论。弗里德曼始终对凯恩斯心怀敬意,尽管他本人在某种程度上已经取代了凯恩斯。
此外,与许多著名经济学家不同,弗里德曼赢得诺贝尔经济学奖的学术文献与他在报刊上发表的文章之间,保持了连贯性。1966年至1984年间,他每隔两周为《新闻周刊》(Newsweek)撰写的专栏,成为运用经济分析阐明当下事件的典范。
他的赞赏者与批评者均指出,他的世界观本质上颇为简单:坚定信仰个人自由,深信自由市场是协调个人活动、实现共同富裕的最佳途径。
张五常
http://blog.sina.com.cn/u/47841af7010005bs
二十世纪后期举世都向自由市场那方向走,好些朋友认为佛利民是主要的影响人物。佛老则认为自己毫无影响力,只是时势造英雄。他是太客气了。二十世纪下半部是历史上一个大时代转变。一个个子不高的人站在那里,不卖账,不哗众取宠,半步不移。但上苍帮助了他。上苍授予他无与伦比的天赋与耐力,使他能在理论、历史、数学、统计等学问上尽达一流,而同样重要的,是他语言表达的清晰也百年仅见。
University of Chicago
http://www-news.uchicago.edu/releases/06/061116.friedman.shtml
Professor Emeritus Milton Friedman dies at 94
Stanford University
http://news-service.stanford.edu/news/2006/november29/friedman-112906.html
Economist Milton Friedman, Nobel laureate and Hoover Institution fellow, dead at 94
"Today Stanford has lost a great scholar and friend, and our country has lost one of its leading economists," Stanford President John L. Hennessy said. "Dr. Friedman's ability to explain complicated economic theories has had a profound impact beyond the university. We will miss his candor and intelligence, but we are quite certain that his insights will live for generations."
曹仁超观天下:中国服务业比重将提升(21世纪经济报道,20061113)
曹仁超观天下:中国服务业比重将提升
工业化是一个国家或地区财富迅速增长的不二法门,但经济最终的走向仍然倚赖内部消费。这个过程由英国工业革命开始,到美国制造业兴起、日本经济战后繁荣、亚洲四小龙,然后到今天中国。
香港1980年代初,工业化已经走到尽头;加上中国改革开放政策,令香港经济迅速进入内部消费时代。去年制造业只占香港本港GDP的5%、服务业占84%,其他为个人及政府投资。去年中国农业占GDP的16.5%、制造业占39%、服务业占32.5%,投资所占比重仍然十分大,情况同1970和1980年代的香港相似。当年地铁、十年建屋计划、道路兴建等等设施,都由1970年代开始,到1990年达到高潮,余下的大工程只有赤角,此乃本港上市建筑股由1994年起走势一年不如一年的原因。
长远而言,中国经济工业及投资占GDP比重也将下降,服务业则会进一步提升,情况一如香港过去20年。
工业化是一个国家或地区财富迅速增长的不二法门,但经济最终的走向仍然倚赖内部消费。这个过程由英国工业革命开始,到美国制造业兴起、日本经济战后繁荣、亚洲四小龙,然后到今天中国。
香港1980年代初,工业化已经走到尽头;加上中国改革开放政策,令香港经济迅速进入内部消费时代。去年制造业只占香港本港GDP的5%、服务业占84%,其他为个人及政府投资。去年中国农业占GDP的16.5%、制造业占39%、服务业占32.5%,投资所占比重仍然十分大,情况同1970和1980年代的香港相似。当年地铁、十年建屋计划、道路兴建等等设施,都由1970年代开始,到1990年达到高潮,余下的大工程只有赤角,此乃本港上市建筑股由1994年起走势一年不如一年的原因。
长远而言,中国经济工业及投资占GDP比重也将下降,服务业则会进一步提升,情况一如香港过去20年。
2006年11月15日星期三
About Philips
飞利浦是一家说不清楚的公司。
前几年,大约是从1988年开始,飞利浦在欧洲掀起了对中国彩电的反倾销诉讼。
后来,又有了对于中国节能灯的反倾销,2000年5月17日,欧盟委员会发布公告,宣布接受三家欧盟节能灯厂家于4月4日提出的诉讼,对来自中国的节能灯进行反倾销调查。无独有偶,在三家起诉企业中,飞利浦又出现了。
无独有偶,在GE前任老板Jack Welch的自传(Straight From The Gut),也有一段关于飞利浦的故事。
并非我们着手的所有全球化交易都走向了成功,有些还给我们留下了惨痛的教训。我只记得有一次,也许是两次,信任和诚实正直被抛弃了。最糟糕的一次是1988年,我和保罗到荷兰的艾恩德霍芬(Eindhoven),与飞利浦公司的CEO会谈。我们已经听说他有兴趣卖掉公司的电器业务。如果那笔买卖成交,我们在欧洲的电器市场就拥有了强大的地位。
他是在1980年代中期当上飞利浦CEO的,对于如何改革他的公司有一些大胆的设想。一天晚上,他在飞利浦大楼的工作晚餐上告诉我们,他打算卖掉他的主要电器公司——飞利浦在这个领域是欧洲的第二大公司——并且在考虑卖掉飞利浦的医疗设备业务。他甚至不知道自己是否想继续留在照明领域—尽管这个荷兰公司是我们在电灯泡业务领域最大的竞争对手。
他喜欢半导体和电子消费品。
晚餐结束后,我们冒雨赶往机场。路上,我对弗雷斯科说:“你有没有在一个房间里同时听到过从两个完全不同的角度谈论同样的业务?我们两人不可能都对,我们有一个人最后会火烧屁股的。”
那天的会谈之后,我们开始谈判飞利浦的电器业务。那个CEO安排他的总裁与保罗谈判。经过几个星期的努力后,我们就价格问题达成了一致,便认为可以成交了。这时,令人震惊的变故发生了。
在他们握手后的第二天,那位总裁带来了惊人的消息:“对不起,保罗,我们打算和惠尔浦(Whirpool)合作。”
我给那个CEO拨通了电话。“这不公平,”我说。
他表示同意。“你把保罗派过来吧,我们这个星期内解决这个问题。”
当时正在意大利科尔蒂纳(Cortina)度假的保罗立刻离开妻子飞到了艾恩德霍芬。他用了星期四整天的时间就新交易进行谈判,同意为飞利浦的电器业务支付更多的资金。到星期五中午,细节问题也完成了。飞利浦方面叫保罗回自己的饭店去。
“我们下午4点之前过去,到时我们带去打印好的正式文件,就可以签字了,”那位总裁说。“到时我们喝一杯香槟。”
大约5点左右,他出现在保罗的饭店时,抛出了第二颗炸弹。
“我很抱歉,我们要跟惠尔浦合作。他们又回来了,报的价比你们高。”
保罗简直不敢相信。当他在半夜时分给我打电话时,我被震怒了。飞利浦在一项交易上动摇一次已经够糟糕的了,第二次谈判是我在高层商务交易中所从来没有见过的。
所幸,在我担任CEO的20多年时间里,经手了成千上万次兼并、合伙和交易,这种事情很少发生,而像艾恩德霍芬那次公然背信弃义的情况,也就是那么一次。”
下面是从网上摘抄的部分相关内容。
………………………………………………………………………………
“从1988年开始,欧盟对来自中国的彩电立案反倾销,征收的税率从15.3%,到28.8%,又到25.6%,最后达到44.6%,致使中国出口欧洲的彩电逐年减少,最后完全被赶出欧洲市场。这一过程持续了12年之久。
2000年4月2日,欧盟向中国彩电征收的44.6%的高额反倾销税到期。按照欧盟的有关法律,如果欧盟起诉方于2000年1月2日前不提出日落复审,则这项导致中国彩电长期不能出口欧洲的税率将会自动停止。
4月2日过后,从欧盟委员会传来消息,欧盟彩电企业赶在2000年1月2日前提出日落复审,要求维持对中国彩电的44.6%的高额反倾销税。
虽然欧盟起诉方提出日落复审没有出乎人们的意料,但是对于熟悉此案内情的中方有关人员来说,心中颇不是滋味。因为,欧盟起诉企业中,有一家中国人非常熟悉的企业,这就是飞利浦公司。
从1985年飞利浦在中国的第一家合资企业建立,至今15年,飞利浦已在中国建立独资、合资企业32个,投资超过10亿美元,在中国的电子市场上占据了可观的份额。
同样的,在长达12年的驱逐中国彩电的诉讼中,飞利浦也是最主要的起诉方。”
……………………………………………………………………………………
前几年,大约是从1988年开始,飞利浦在欧洲掀起了对中国彩电的反倾销诉讼。
后来,又有了对于中国节能灯的反倾销,2000年5月17日,欧盟委员会发布公告,宣布接受三家欧盟节能灯厂家于4月4日提出的诉讼,对来自中国的节能灯进行反倾销调查。无独有偶,在三家起诉企业中,飞利浦又出现了。
无独有偶,在GE前任老板Jack Welch的自传(Straight From The Gut),也有一段关于飞利浦的故事。
并非我们着手的所有全球化交易都走向了成功,有些还给我们留下了惨痛的教训。我只记得有一次,也许是两次,信任和诚实正直被抛弃了。最糟糕的一次是1988年,我和保罗到荷兰的艾恩德霍芬(Eindhoven),与飞利浦公司的CEO会谈。我们已经听说他有兴趣卖掉公司的电器业务。如果那笔买卖成交,我们在欧洲的电器市场就拥有了强大的地位。
他是在1980年代中期当上飞利浦CEO的,对于如何改革他的公司有一些大胆的设想。一天晚上,他在飞利浦大楼的工作晚餐上告诉我们,他打算卖掉他的主要电器公司——飞利浦在这个领域是欧洲的第二大公司——并且在考虑卖掉飞利浦的医疗设备业务。他甚至不知道自己是否想继续留在照明领域—尽管这个荷兰公司是我们在电灯泡业务领域最大的竞争对手。
他喜欢半导体和电子消费品。
晚餐结束后,我们冒雨赶往机场。路上,我对弗雷斯科说:“你有没有在一个房间里同时听到过从两个完全不同的角度谈论同样的业务?我们两人不可能都对,我们有一个人最后会火烧屁股的。”
那天的会谈之后,我们开始谈判飞利浦的电器业务。那个CEO安排他的总裁与保罗谈判。经过几个星期的努力后,我们就价格问题达成了一致,便认为可以成交了。这时,令人震惊的变故发生了。
在他们握手后的第二天,那位总裁带来了惊人的消息:“对不起,保罗,我们打算和惠尔浦(Whirpool)合作。”
我给那个CEO拨通了电话。“这不公平,”我说。
他表示同意。“你把保罗派过来吧,我们这个星期内解决这个问题。”
当时正在意大利科尔蒂纳(Cortina)度假的保罗立刻离开妻子飞到了艾恩德霍芬。他用了星期四整天的时间就新交易进行谈判,同意为飞利浦的电器业务支付更多的资金。到星期五中午,细节问题也完成了。飞利浦方面叫保罗回自己的饭店去。
“我们下午4点之前过去,到时我们带去打印好的正式文件,就可以签字了,”那位总裁说。“到时我们喝一杯香槟。”
大约5点左右,他出现在保罗的饭店时,抛出了第二颗炸弹。
“我很抱歉,我们要跟惠尔浦合作。他们又回来了,报的价比你们高。”
保罗简直不敢相信。当他在半夜时分给我打电话时,我被震怒了。飞利浦在一项交易上动摇一次已经够糟糕的了,第二次谈判是我在高层商务交易中所从来没有见过的。
所幸,在我担任CEO的20多年时间里,经手了成千上万次兼并、合伙和交易,这种事情很少发生,而像艾恩德霍芬那次公然背信弃义的情况,也就是那么一次。”
下面是从网上摘抄的部分相关内容。
………………………………………………………………………………
“从1988年开始,欧盟对来自中国的彩电立案反倾销,征收的税率从15.3%,到28.8%,又到25.6%,最后达到44.6%,致使中国出口欧洲的彩电逐年减少,最后完全被赶出欧洲市场。这一过程持续了12年之久。
2000年4月2日,欧盟向中国彩电征收的44.6%的高额反倾销税到期。按照欧盟的有关法律,如果欧盟起诉方于2000年1月2日前不提出日落复审,则这项导致中国彩电长期不能出口欧洲的税率将会自动停止。
4月2日过后,从欧盟委员会传来消息,欧盟彩电企业赶在2000年1月2日前提出日落复审,要求维持对中国彩电的44.6%的高额反倾销税。
虽然欧盟起诉方提出日落复审没有出乎人们的意料,但是对于熟悉此案内情的中方有关人员来说,心中颇不是滋味。因为,欧盟起诉企业中,有一家中国人非常熟悉的企业,这就是飞利浦公司。
从1985年飞利浦在中国的第一家合资企业建立,至今15年,飞利浦已在中国建立独资、合资企业32个,投资超过10亿美元,在中国的电子市场上占据了可观的份额。
同样的,在长达12年的驱逐中国彩电的诉讼中,飞利浦也是最主要的起诉方。”
……………………………………………………………………………………
2006年11月12日星期日
一个人的周末
一个人的周末,有点孤独。
看了几本书,新一期的《三联生活周刊》,《纸上谈兵说管理》,新一期的《Fortune》,新的五百强出来了,Exxon夺了Walmart老大的位置,自然而然,又有几家大而不强的中国企业上榜了(看看利润率,看看员工人数,跟同类型的企业比较一下),不过话又说回来,上榜可能总是比不上榜好。
看了几本碟片,德国佬拍的《十字军骑士》,日本佬的《子狐物语》,美国佬的《You, me and Dufree》,翻译成《新婚奥客》
看了几本书,新一期的《三联生活周刊》,《纸上谈兵说管理》,新一期的《Fortune》,新的五百强出来了,Exxon夺了Walmart老大的位置,自然而然,又有几家大而不强的中国企业上榜了(看看利润率,看看员工人数,跟同类型的企业比较一下),不过话又说回来,上榜可能总是比不上榜好。
看了几本碟片,德国佬拍的《十字军骑士》,日本佬的《子狐物语》,美国佬的《You, me and Dufree》,翻译成《新婚奥客》
2006年11月3日星期五
人事安排,好玩,呵呵
国家主席:李世民
军委主席:孙武
人大常委会委员长:孙中山
国务院总理:诸葛亮
外交部部长:文成公主
国防部部长:曹操
教育部部长:孔子
卫生部部长:华佗
环保总局局长:陶渊明
农业部部长:李宇春
文化部部长:李斯
商务部部长:胡雪岩
水利部部长:大禹
建设部部长:秦始皇
地质部部长:土行孙
公安部部长:展昭
中宣部部长:雍正
国土资源部部长:徐霞客
发展与改革委员会主任:商鞅
最高人民法院院长:包拯
最高人民检察院检察长:狄仁杰
国家烟草专卖局局长:林则徐
妇联主任:贾宝玉
新闻出版署署长:纪晓岚
国家广播电影电视总局局长:西门庆
海关总署署长:郑和
国家烟草专卖局主任:佘太君
中国民用航空总局局长:嫦娥
国家体育总局局长:高俅
科学技术部主任:祖冲之
国家民族事务委员会主任:王昭君
国家安全部部长:魏忠贤
监察部部长:秦桧
民政部部长:寇准
财政部部长:和珅
信息产业部部长:毕升
保密局局长:刘胡兰
交通部部长:李春
国务院台湾事务办公室主任:郑成功
国家信访局局长:陈世美
中国气象局局长:诸葛亮(兼)
国家旅游局局长:徐霞客(兼)
国家宗教事务局局长:玄奘
国家食品药品监督管理局局长:神农
国家海洋局局长:张靓颖
中国地震局局长:张衡
拆迁办主任:孟姜女
军委主席:孙武
人大常委会委员长:孙中山
国务院总理:诸葛亮
外交部部长:文成公主
国防部部长:曹操
教育部部长:孔子
卫生部部长:华佗
环保总局局长:陶渊明
农业部部长:李宇春
文化部部长:李斯
商务部部长:胡雪岩
水利部部长:大禹
建设部部长:秦始皇
地质部部长:土行孙
公安部部长:展昭
中宣部部长:雍正
国土资源部部长:徐霞客
发展与改革委员会主任:商鞅
最高人民法院院长:包拯
最高人民检察院检察长:狄仁杰
国家烟草专卖局局长:林则徐
妇联主任:贾宝玉
新闻出版署署长:纪晓岚
国家广播电影电视总局局长:西门庆
海关总署署长:郑和
国家烟草专卖局主任:佘太君
中国民用航空总局局长:嫦娥
国家体育总局局长:高俅
科学技术部主任:祖冲之
国家民族事务委员会主任:王昭君
国家安全部部长:魏忠贤
监察部部长:秦桧
民政部部长:寇准
财政部部长:和珅
信息产业部部长:毕升
保密局局长:刘胡兰
交通部部长:李春
国务院台湾事务办公室主任:郑成功
国家信访局局长:陈世美
中国气象局局长:诸葛亮(兼)
国家旅游局局长:徐霞客(兼)
国家宗教事务局局长:玄奘
国家食品药品监督管理局局长:神农
国家海洋局局长:张靓颖
中国地震局局长:张衡
拆迁办主任:孟姜女
您为什么要这样做啊?这样做有意义吗?大家都不是傻瓜,你说呢??
为什么?
为什么?
为什么?
为什么?
为什么?为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
为什么?
2006年10月24日星期二
"The World is Flat",世界是平的,作者,Thomas Friedman在MIT的演讲
Thomas L. Friedman
关于本次演讲:在当今的社会中,很有可能你下次拍的 X 光片是由印度邦加罗尔的 Bhavva 帮你判读,或者是就像 Thomas Friedman 的第一手经验一样,“穿着睡袍的祖母贝蒂”在她盐湖城的家中替你预定 Jet Blue 的机票。在“全球化 3.0 ”的世界中, Friedman 认为,身在遥远国度的人将会成为市场上的重要关键。
Friedman 在他最新的著作“世界是平的”中,他描述了一个预料之外的科技与社会变动,夷平了整个经济世界的崎岖,“意外的让邦加罗尔、北京和美国的贝西达成为隔壁的邻居。”今日,“各种肤色的个人和团队将都可以随插随用各种资源。”Friendman 所描述的夷平机制包括了柏林围墙的倒下,包括了 Netscape 的兴起和网络热潮,以及其所引起数以百兆计的光纤缆线的投资,让全球跨国合作得以发生的共通网络平台和开放原始码软件,外包、海外生产、供应炼规划、内包(或称委内,承接公司内部业务)的兴起。 Friedman 认为这些夷平机制在 2000 年时统合在一起运作,“架构了一个平坦的世界:不受时间、距离、地理和越来越超越语言的限制,透过网络的平台来进行各种知识和工作的分享。”正在这平台出现的时候,三个巨大的经济体跟着踏入世界舞台,印度、中国和前苏联。“三十亿人口原先只能袖手旁观,现在正式踏上了舞台。”最后一次命运的汇聚决定了美国在这个全球化的最终章中扮演的角色, Friedman 将其描述为“政治的完美风暴”:网络泡沫化、 911 恐怖攻击和安隆假帐事件,正当我们必须面对全球化的事实和在新世界中竞争时,“让我们整个国家都分心他顾,注意力完全集中到了别的地方。”
Chances are good that Bhavya in Bangalore will read your next x-ray, or as Thomas Friedman learned first hand, "Grandma Betty in her bathrobe" will make your Jet Blue plane reservation from her Salt Lake City home. In "Globalization 3.0," Friedman contends, people from far-flung places will become principal players in the marketplace.
In his latest book, The World is Flat, Friedman describes the unplanned cascade of technological and social shifts that effectively leveled the economic world, and "accidentally made Beijing, Bangalore and Bethesda next-door neighbors." Today, "individuals and small groups of every color of the rainbow will be able to plug and play." Friedman's list of "flatteners" includes the fall of the Berlin Wall; the rise of Netscape and the dotcom boom that led to a trillion dollar investment in fiber optic cable; the emergence of common software platforms and open source code enabling global collaboration; and the rise of outsourcing, offshoring, supply chaining and insourcing. Friedman says these flatteners converged around the year 2000, and "created a flat world: a global, web-enabled platform for multiple forms of sharing knowledge and work, irrespective of time, distance, geography and increasingly, language." At the very moment this platform emerged, three huge economies materialized -- those of India, China and the former Soviet Union --"and three billion people who were out of the game, walked onto the playing field." A final convergence may determine the fate of the U.S. in this final chapter of globalization. A "political perfect storm," as Friedman describes it -- the dotcom bust, the attacks of 9/11, and the Enron scandal -- "distract us completely as a country." Just when we need to face the fact of globalization and the need to compete in a new world, "we'e looking totally elsewhere."
关于讲者:Thomas L. Friedman 获得 2002 的普利兹奖中的评论奖项,这也是他为《纽约时报》所赢得的第三个普利兹奖。他在 1995 年成为这份报纸的国际事务专栏作家。之前他是华盛顿的经济事务首席评论员人,在那之前则是白宫的首席评论员。
Friedman 在 1981 年加入《时代杂志》,并且在 1982 年被指派担任时代派驻贝鲁特当地的主任。 1984 年他被从贝鲁特调到耶路撒冷,并且担任时代派驻以色列当地的分部主任直到 1988 年为止。 Friedman 先生在 1983 年获得普利兹国际报导奖(从黎巴嫩),以及 1988 年的普利资国际报导奖(从以色列)。
他的著作《From Beirut to Jerusalem》 (1989)》( 1989 年出版),获得 1989 年的美国非小说奖。第二本《凌志汽车与橄榄树》( 2000 年出版)则在 2000 年时获得了海外出版商俱乐部的最佳外交政策非小说奖项,并被翻译成 27 种语言。
Friedman 出生于 Minneapolis ,在 1975 年于 Brandeis 大学获得地中海地区研究的学士学位, 1978 年他则是从牛津大学获得了中东研究的硕士学位。
his bio on Newyork Times
2006年10月23日星期一
Stay Hungry. Stay Foolish(好学若饥,谦卑若愚)——Steve Jobs在Stanford毕业典礼上的发言
http://news-service.stanford.edu/news/2005/june15/jobs-061505.html
'You've got to find what you love,' Jobs says
This is the text of the Commencement address by Steve Jobs, CEO of Apple Computer and of Pixar Animation Studios, delivered on June 12, 2005.
I am honored to be with you today at your commencement from one of the finest universities in the world. I never graduated from college. Truth be told, this is the closest I've ever gotten to a college graduation. Today I want to tell you three stories from my life. That's it. No big deal. Just three stories.
The first story is about connecting the dots.
I dropped out of Reed College after the first 6 months, but then stayed around as a drop-in for another 18 months or so before I really quit. So why did I drop out?
It started before I was born. My biological mother was a young, unwed college graduate student, and she decided to put me up for adoption. She felt very strongly that I should be adopted by college graduates, so everything was all set for me to be adopted at birth by a lawyer and his wife. Except that when I popped out they decided at the last minute that they really wanted a girl. So my parents, who were on a waiting list, got a call in the middle of the night asking: "We have an unexpected baby boy; do you want him?" They said: "Of course." My biological mother later found out that my mother had never graduated from college and that my father had never graduated from high school. She refused to sign the final adoption papers. She only relented a few months later when my parents promised that I would someday go to college.
And 17 years later I did go to college. But I naively chose a college that was almost as expensive as Stanford, and all of my working-class parents' savings were being spent on my college tuition. After six months, I couldn't see the value in it. I had no idea what I wanted to do with my life and no idea how college was going to help me figure it out. And here I was spending all of the money my parents had saved their entire life. So I decided to drop out and trust that it would all work out OK. It was pretty scary at the time, but looking back it was one of the best decisions I ever made. The minute I dropped out I could stop taking the required classes that didn't interest me, and begin dropping in on the ones that looked interesting.
It wasn't all romantic. I didn't have a dorm room, so I slept on the floor in friends' rooms, I returned coke bottles for the 5¢ deposits to buy food with, and I would walk the 7 miles across town every Sunday night to get one good meal a week at the Hare Krishna temple. I loved it. And much of what I stumbled into by following my curiosity and intuition turned out to be priceless later on. Let me give you one example:
Reed College at that time offered perhaps the best calligraphy instruction in the country. Throughout the campus every poster, every label on every drawer, was beautifully hand calligraphed. Because I had dropped out and didn't have to take the normal classes, I decided to take a calligraphy class to learn how to do this. I learned about serif and san serif typefaces, about varying the amount of space between different letter combinations, about what makes great typography great. It was beautiful, historical, artistically subtle in a way that science can't capture, and I found it fascinating.
None of this had even a hope of any practical application in my life. But ten years later, when we were designing the first Macintosh computer, it all came back to me. And we designed it all into the Mac. It was the first computer with beautiful typography. If I had never dropped in on that single course in college, the Mac would have never had multiple typefaces or proportionally spaced fonts. And since Windows just copied the Mac, its likely that no personal computer would have them. If I had never dropped out, I would have never dropped in on this calligraphy class, and personal computers might not have the wonderful typography that they do. Of course it was impossible to connect the dots looking forward when I was in college. But it was very, very clear looking backwards ten years later.
Again, you can't connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in your future. You have to trust in something — your gut, destiny, life, karma, whatever. This approach has never let me down, and it has made all the difference in my life.
My second story is about love and loss.
I was lucky — I found what I loved to do early in life. Woz and I started Apple in my parents garage when I was 20. We worked hard, and in 10 years Apple had grown from just the two of us in a garage into a $2 billion company with over 4000 employees. We had just released our finest creation — the Macintosh — a year earlier, and I had just turned 30. And then I got fired. How can you get fired from a company you started? Well, as Apple grew we hired someone who I thought was very talented to run the company with me, and for the first year or so things went well. But then our visions of the future began to diverge and eventually we had a falling out. When we did, our Board of Directors sided with him. So at 30 I was out. And very publicly out. What had been the focus of my entire adult life was gone, and it was devastating.
I really didn't know what to do for a few months. I felt that I had let the previous generation of entrepreneurs down - that I had dropped the baton as it was being passed to me. I met with David Packard and Bob Noyce and tried to apologize for screwing up so badly. I was a very public failure, and I even thought about running away from the valley. But something slowly began to dawn on me — I still loved what I did. The turn of events at Apple had not changed that one bit. I had been rejected, but I was still in love. And so I decided to start over.
I didn't see it then, but it turned out that getting fired from Apple was the best thing that could have ever happened to me. The heaviness of being successful was replaced by the lightness of being a beginner again, less sure about everything. It freed me to enter one of the most creative periods of my life.
During the next five years, I started a company named NeXT, another company named Pixar, and fell in love with an amazing woman who would become my wife. Pixar went on to create the worlds first computer animated feature film, Toy Story, and is now the most successful animation studio in the world. In a remarkable turn of events, Apple bought NeXT, I returned to Apple, and the technology we developed at NeXT is at the heart of Apple's current renaissance. And Laurene and I have a wonderful family together.
I'm pretty sure none of this would have happened if I hadn't been fired from Apple. It was awful tasting medicine, but I guess the patient needed it. Sometimes life hits you in the head with a brick. Don't lose faith. I'm convinced that the only thing that kept me going was that I loved what I did. You've got to find what you love. And that is as true for your work as it is for your lovers. Your work is going to fill a large part of your life, and the only way to be truly satisfied is to do what you believe is great work. And the only way to do great work is to love what you do. If you haven't found it yet, keep looking. Don't settle. As with all matters of the heart, you'll know when you find it. And, like any great relationship, it just gets better and better as the years roll on. So keep looking until you find it. Don't settle.
My third story is about death.
When I was 17, I read a quote that went something like: "If you live each day as if it was your last, someday you'll most certainly be right." It made an impression on me, and since then, for the past 33 years, I have looked in the mirror every morning and asked myself: "If today were the last day of my life, would I want to do what I am about to do today?" And whenever the answer has been "No" for too many days in a row, I know I need to change something.
Remembering that I'll be dead soon is the most important tool I've ever encountered to help me make the big choices in life. Because almost everything — all external expectations, all pride, all fear of embarrassment or failure - these things just fall away in the face of death, leaving only what is truly important. Remembering that you are going to die is the best way I know to avoid the trap of thinking you have something to lose. You are already naked. There is no reason not to follow your heart.
About a year ago I was diagnosed with cancer. I had a scan at 7:30 in the morning, and it clearly showed a tumor on my pancreas. I didn't even know what a pancreas was. The doctors told me this was almost certainly a type of cancer that is incurable, and that I should expect to live no longer than three to six months. My doctor advised me to go home and get my affairs in order, which is doctor's code for prepare to die. It means to try to tell your kids everything you thought you'd have the next 10 years to tell them in just a few months. It means to make sure everything is buttoned up so that it will be as easy as possible for your family. It means to say your goodbyes.
I lived with that diagnosis all day. Later that evening I had a biopsy, where they stuck an endoscope down my throat, through my stomach and into my intestines, put a needle into my pancreas and got a few cells from the tumor. I was sedated, but my wife, who was there, told me that when they viewed the cells under a microscope the doctors started crying because it turned out to be a very rare form of pancreatic cancer that is curable with surgery. I had the surgery and I'm fine now.
This was the closest I've been to facing death, and I hope its the closest I get for a few more decades. Having lived through it, I can now say this to you with a bit more certainty than when death was a useful but purely intellectual concept:
No one wants to die. Even people who want to go to heaven don't want to die to get there. And yet death is the destination we all share. No one has ever escaped it. And that is as it should be, because Death is very likely the single best invention of Life. It is Life's change agent. It clears out the old to make way for the new. Right now the new is you, but someday not too long from now, you will gradually become the old and be cleared away. Sorry to be so dramatic, but it is quite true.
Your time is limited, so don't waste it living someone else's life. Don't be trapped by dogma — which is living with the results of other people's thinking. Don't let the noise of others' opinions drown out your own inner voice. And most important, have the courage to follow your heart and intuition. They somehow already know what you truly want to become. Everything else is secondary.
When I was young, there was an amazing publication called The Whole Earth Catalog, which was one of the bibles of my generation. It was created by a fellow named Stewart Brand not far from here in Menlo Park, and he brought it to life with his poetic touch. This was in the late 1960's, before personal computers and desktop publishing, so it was all made with typewriters, scissors, and polaroid cameras. It was sort of like Google in paperback form, 35 years before Google came along: it was idealistic, and overflowing with neat tools and great notions.
Stewart and his team put out several issues of The Whole Earth Catalog, and then when it had run its course, they put out a final issue. It was the mid-1970s, and I was your age. On the back cover of their final issue was a photograph of an early morning country road, the kind you might find yourself hitchhiking on if you were so adventurous. Beneath it were the words: "Stay Hungry. Stay Foolish." It was their farewell message as they signed off. Stay Hungry. Stay Foolish. And I have always wished that for myself. And now, as you graduate to begin anew, I wish that for you.
Stay Hungry. Stay Foolish.
Thank you all very much.
财富中文版翻译:
http://www.fortunechina.com/magazine/c/2005-11/01/content_1498.htm
“好学若饥、谦卑若愚”
作者: JSteve Jobs
毕 业典礼上的演讲大都轻松愉快,而且容易被遗忘。然而,史蒂夫•乔布斯(Steve Jobs)今年 6 月在斯坦福大学的演讲在经过了一个夏天之后依然为人所提及。这位苹果电脑公司(Apple Computer)和皮克斯动画公司(Pixar Animation Studios)首席执行官在演讲中谈到了他生活中的三次体验,这三次体验不仅在斯坦福大学的毕业生、也在硅谷乃至其他地方的技术同行中引起了巨大反响。他们将他的演讲登在互联网上,在博客上展开讨论,通过电子邮件互相发送,在全球传阅。经乔布斯本人同意,我们在此刊登全文,以飨还没有看到该演讲的读者。
很荣幸和大家一道参加这所世界上最好的一座大学的毕业典礼。我大学没毕业,说实话,这是我第一次离大学毕业典礼这么近。今天我想给大家讲三个我自己的故事,不讲别的,也不讲大道理,就讲三个故事。
第一个故事讲的是点与点之间的关系。我在里德学院(Reed College)只读了六个月就退学了,此后便在学校里旁听,又过了大约一年半,我彻底离开。那么,我为什么退学呢?
这得从我出生前讲起。我的生母是一名年轻的未婚在校研究生,她决定将我送给别人收养。她非常希望收养我的是有大学学历的人,所以把一切都安排好了,我一出生就交给一对律师夫妇收养。没想到我落地的霎那间,那对夫妇却决定收养一名女孩。就这样,我的养父母─当时他们还在登记册上排队等著呢─半夜三更接到一个电话: “我们这儿有一个没人要的男婴,你们要么?”“当然要”他们回答。但是,我的生母后来发现我的养母不是大学毕业生,我的养父甚至连中学都没有毕业,所以她拒绝在最后的收养文件上签字。不过,没过几个月她就心软了,因为我的养父母许诺日后一定送我上大学。
17 年后,我真的进了大学。当时我很天真,选了一所学费几乎和斯坦福大学一样昂贵的学校,当工人的养父母倾其所有的积蓄为我支付了大学学费。读了六个月后,我却看不出上学有什么意义。我既不知道自己这一生想干什么,也不知道大学是否能够帮我弄明白自己想干什么。这时,我就要花光父母一辈子节省下来的钱了。所以,我决定退学,并且坚信日后会证明我这样做是对的。当年做出这个决定时心里直打鼓,但现在回想起来,这还真是我有生以来做出的最好的决定之一。从退学那一刻起,我就可以不再选那些我毫无兴趣的必修课,开始旁听一些看上去有意思的课。 那些日子一点儿都不浪漫。我没有宿舍,只能睡在朋友房间的地板上。我去退还可乐瓶,用那五分钱的押金来买吃的。每个星期天晚上我都要走七英里,到城那头的黑尔-科里施纳礼拜堂去,吃每周才能享用一次的美餐。我喜欢这样。我凭著好奇心和直觉所干的这些事情,有许多后来都证明是无价之宝。我给大家举个例子:
当时,里德学院的书法课大概是全国最好的。校园里所有的公告栏和每个抽屉标签上的字都写得非常漂亮。当时我已经退学,不用正常上课,所以我决定选一门书法课,学学怎么写好字。我学习写带短截线和不带短截线的印刷字体,根据不同字母组合调整其间距,以及怎样把版式调整得好上加好。这门课太棒了,既有历史价值,又有艺术造诣,这一点科学就做不到,而我觉得它妙不可言。
当时我并不指望书法在以后的生活中能有什么实用价值。但是,十年之后,我们在设计第一台 Macintosh 计算机时,它一下子浮现在我眼前。于是,我们把这些东西全都设计进了计算机中。这是第一台有这么漂亮的文字版式的计算机。要不是我当初在大学里偶然选了这么一门课,Macintosh 计算机绝不会有那么多种印刷字体或间距安排合理的字号。要不是 Windows 照搬了 Macintosh,个人电脑可能不会有这些字体和字号。要不是退了学,我决不会碰巧选了这门书法课,个人电脑也可能不会有现在这些漂亮的版式了。当然,我在大学里不可能从这一点上看到它与将来的关系。十年之后再回头看,两者之间的关系就非常、非常清楚了。 你们同样不可能从现在这个点上看到将来;只有回头看时,才会发现它们之间的关系。所以,要相信这些点迟早会连接到一起。你们必须信赖某些东西─直觉、归宿、生命,还有业力,等等。这样做从来没有让我的希望落空过,而且还彻底改变了我的生活。
我的第二个故事是关于好恶与得失。幸运的是,我在很小的时候就发现自己喜欢做什么。我在 20 岁时和沃兹(Woz,苹果公司创始人之一 Wozon 的昵称─译注)在我父母的车库里办起了苹果公司。我们干得很卖力,十年后,苹果公司就从车库里我们两个人发展成为一个拥有 20 亿元资产、4,000 名员工的大企业。那时,我们刚刚推出了我们最好的产品─ Macintosh 电脑─那是在第 9 年,我刚满 30 岁。可后来,我被解雇了。你怎么会被自己办的公司解雇呢?是这样,随著苹果公司越做越大,我们聘了一位我认为非常有才华的人与我一道管理公司。在开始的一年多里,一切都很顺利。可是,随后我俩对公司前景的看法开始出现分歧,最后我俩反目了。这时,董事会站在了他那一边,所以在 30 岁那年,我离开了公司,而且这件事闹得满城风雨。我成年后的整个生活重心都没有了,这使我心力交瘁。
一连几个月,我真的不知道应该怎么办。我感到自己给老一代的创业者丢了脸─因为我扔掉了交到自己手里的接力棒。我去见了戴维•帕卡德(David Packard,惠普公司创始人之一─译注)和鲍勃•诺伊斯(Bob Noyce,英特尔公司创建者之一─译注),想为把事情搞得这么糟糕说声道歉。这次失败弄得沸沸扬扬的,我甚至想过逃离硅谷。但是,渐渐地,我开始有了一个想法─我仍然热爱我过去做的一切。在苹果公司发生的这些风波丝毫没有改变这一点。我虽然被拒之门外,但我仍然深爱我的事业。于是,我决定从头开始。
虽然当时我并没有意识到,但事实证明,被苹果公司炒鱿鱼是我一生中碰到的最好的事情。尽管前景未卜,但从头开始的轻松感取代了保持成功的沉重感。这使我进入了一生中最富有创造力的时期之一。 在此后的五年里,我开了一家名叫 NeXT 的公司和一家叫皮克斯的公司,我还爱上一位了不起的女人,后来娶了她。皮克斯公司推出了世界上第一部用电脑制作的动画片《玩具总动员》(Toy Story),它现在是全球最成功的动画制作室。世道轮回,苹果公司买下 NeXT 后,我又回到了苹果公司,我们在 NeXT 公司开发的技术成了苹果公司这次重新崛起的核心。我和劳伦娜(Laurene)也建立了美满的家庭。
我确信,如果不是被苹果公司解雇,这一切决不可能发生。这是一剂苦药,可我认为苦药利于病。有时生活会当头给你一棒,但不要灰心。我坚信让我一往无前的唯一力量就是我热爱我所做的一切。所以,一定得知道自己喜欢什么,选择爱人时如此,选择工作时同样如此。工作将是生活中的一大部分,让自己真正满意的唯一办法,是做自己认为是有意义的工作;做有意义的工作的唯一办法,是热爱自己的工作。你们如果还没有发现自己喜欢什么,那就不断地去寻找,不要急于做出决定。就像一切要凭著感觉去做的事情一样,一旦找到了自己喜欢的事,感觉就会告诉你。就像任何一种美妙的东西,历久弥新。所以说,要不断地寻找,直到找到自己喜欢的东西。不要半途而废。 我的第三个故事与死亡有关。17 岁那年,我读到过这样一段话,大意是:“如果把每一天都当作生命的最后一天,总有一天你会如愿以偿。”我记住了这句话,从那时起,33 年过去了,我每天早晨都对著镜子自问: “假如今天是生命的最后一天,我还会去做今天要做的事吗?”如果一连许多天我的回答都是“不”,我知道自己应该有所改变了。
让我能够做出人生重大抉择的最主要办法是,记住生命随时都有可能结束。因为几乎所有的东西─所有对自身之外的希求、所有的尊严、所有对困窘和失败的恐惧─在死亡来临时都将不复存在,只剩下真正重要的东西。记住自己随时都会死去,这是我所知道的防止患得患失的最好方法。你已经一无所有了,还有什么理由不跟著自己的感觉走呢。
大约一年前,我被诊断患了癌症。那天早上七点半,我做了一次扫描检查,结果清楚地表明我的胰腺上长了一个瘤子,可那时我连胰腺是什么还不知道呢!医生告诉我说,几乎可以确诊这是一种无法治愈的恶性肿瘤,我最多还能活 3 到 6 个月。医生建议我回去把一切都安排好,其实这是在暗示“准备后事”。也就是说,把今后十年要跟孩子们说的事情在这几个月内嘱咐完;也就是说,把一切都安排妥当,尽可能不给家人留麻烦;也就是说,去跟大家诀别。
那一整天里,我的脑子一直没离开这个诊断。到了晚上,我做了一次组织切片检查,他们把一个内窥镜通过喉咙穿过我的胃进入肠子,用针头在胰腺的瘤子上取了一些细胞组织。当时我用了麻醉剂,陪在一旁的妻子后来告诉我,医生在显微镜里看了细胞之后叫了起来,原来这是一种少见的可以通过外科手术治愈的恶性肿瘤。我做了手术,现在好了。
这是我和死神离得最近的一次,我希望也是今后几十年里最近的一次。有了这次经历之后,现在我可以更加实在地和你们谈论死亡,而不是纯粹纸上谈兵,那就是: 谁都不愿意死。就是那些想进天堂的人也不愿意死后再进。然而,死亡是我们共同的归宿,没人能摆脱。我们注定会死,因为死亡很可能是生命最好的一项发明。它推进生命的变迁,旧的不去,新的不来。现在,你们就是新的,但在不久的将来,你们也会逐渐成为旧的,也会被淘汰。对不起,话说得太过分了,不过这是千真万确的。
人生苦短,不要浪费时间活在别人的阴影里。不要囿于成见,那是在按照别人设想的结果而活。不要让别人观点的聒噪声淹没自己的心声。最主要的是,要有跟著自己感觉和直觉走的勇气。无论如何,感觉和直觉早就知道你到底想成为什么样的人,其他都是次要的。
我年轻时有一本非常好的刊物,叫《全球概览》(The Whole Earth Catalog),这是我那代人的宝书之一,创办人名叫斯图尔特•布兰德(Stewart Brand),就住在离这儿不远的门洛帕克市。他用诗一般的语言把刊物办得生动活泼。那是 20 世纪 60 年代末,还没有个人电脑和桌面印刷系统,全靠打字机、剪刀和宝丽莱照相机(Polaroid)。它就像一种纸质的 Google,却比 Google 早问世了 35 年。这份刊物太完美了,查阅手段齐备、构思不凡。
斯图尔特和他的同事们出了好几期《全球概览》,到最后办不下去时,他们出了最后一期。那是 20 世纪 70 年代中期,我也就是你们现在的年纪。最后一期的封底上是一张清晨乡间小路的照片,就是那种爱冒险的人等在那儿搭便车的那种小路。照片下面写道: 好学若饥、谦卑若愚。那是他们停刊前的告别辞。求知若渴,大智若愚。这也是我一直想做到的。眼下正值诸位大学毕业、开始新生活之际,我同样愿大家: 好学若饥、谦卑若愚。
谢谢大家。
译者: 于少蔚
Video from Campus net of Stanford Univ.
http://news-service.stanford.edu/news/2005/june15/grad-061505.html
http://www.stanford.edu/dept/news/report/news/2005/june15/videos/51.html
'You've got to find what you love,' Jobs says
This is the text of the Commencement address by Steve Jobs, CEO of Apple Computer and of Pixar Animation Studios, delivered on June 12, 2005.
I am honored to be with you today at your commencement from one of the finest universities in the world. I never graduated from college. Truth be told, this is the closest I've ever gotten to a college graduation. Today I want to tell you three stories from my life. That's it. No big deal. Just three stories.
The first story is about connecting the dots.
I dropped out of Reed College after the first 6 months, but then stayed around as a drop-in for another 18 months or so before I really quit. So why did I drop out?
It started before I was born. My biological mother was a young, unwed college graduate student, and she decided to put me up for adoption. She felt very strongly that I should be adopted by college graduates, so everything was all set for me to be adopted at birth by a lawyer and his wife. Except that when I popped out they decided at the last minute that they really wanted a girl. So my parents, who were on a waiting list, got a call in the middle of the night asking: "We have an unexpected baby boy; do you want him?" They said: "Of course." My biological mother later found out that my mother had never graduated from college and that my father had never graduated from high school. She refused to sign the final adoption papers. She only relented a few months later when my parents promised that I would someday go to college.
And 17 years later I did go to college. But I naively chose a college that was almost as expensive as Stanford, and all of my working-class parents' savings were being spent on my college tuition. After six months, I couldn't see the value in it. I had no idea what I wanted to do with my life and no idea how college was going to help me figure it out. And here I was spending all of the money my parents had saved their entire life. So I decided to drop out and trust that it would all work out OK. It was pretty scary at the time, but looking back it was one of the best decisions I ever made. The minute I dropped out I could stop taking the required classes that didn't interest me, and begin dropping in on the ones that looked interesting.
It wasn't all romantic. I didn't have a dorm room, so I slept on the floor in friends' rooms, I returned coke bottles for the 5¢ deposits to buy food with, and I would walk the 7 miles across town every Sunday night to get one good meal a week at the Hare Krishna temple. I loved it. And much of what I stumbled into by following my curiosity and intuition turned out to be priceless later on. Let me give you one example:
Reed College at that time offered perhaps the best calligraphy instruction in the country. Throughout the campus every poster, every label on every drawer, was beautifully hand calligraphed. Because I had dropped out and didn't have to take the normal classes, I decided to take a calligraphy class to learn how to do this. I learned about serif and san serif typefaces, about varying the amount of space between different letter combinations, about what makes great typography great. It was beautiful, historical, artistically subtle in a way that science can't capture, and I found it fascinating.
None of this had even a hope of any practical application in my life. But ten years later, when we were designing the first Macintosh computer, it all came back to me. And we designed it all into the Mac. It was the first computer with beautiful typography. If I had never dropped in on that single course in college, the Mac would have never had multiple typefaces or proportionally spaced fonts. And since Windows just copied the Mac, its likely that no personal computer would have them. If I had never dropped out, I would have never dropped in on this calligraphy class, and personal computers might not have the wonderful typography that they do. Of course it was impossible to connect the dots looking forward when I was in college. But it was very, very clear looking backwards ten years later.
Again, you can't connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in your future. You have to trust in something — your gut, destiny, life, karma, whatever. This approach has never let me down, and it has made all the difference in my life.
My second story is about love and loss.
I was lucky — I found what I loved to do early in life. Woz and I started Apple in my parents garage when I was 20. We worked hard, and in 10 years Apple had grown from just the two of us in a garage into a $2 billion company with over 4000 employees. We had just released our finest creation — the Macintosh — a year earlier, and I had just turned 30. And then I got fired. How can you get fired from a company you started? Well, as Apple grew we hired someone who I thought was very talented to run the company with me, and for the first year or so things went well. But then our visions of the future began to diverge and eventually we had a falling out. When we did, our Board of Directors sided with him. So at 30 I was out. And very publicly out. What had been the focus of my entire adult life was gone, and it was devastating.
I really didn't know what to do for a few months. I felt that I had let the previous generation of entrepreneurs down - that I had dropped the baton as it was being passed to me. I met with David Packard and Bob Noyce and tried to apologize for screwing up so badly. I was a very public failure, and I even thought about running away from the valley. But something slowly began to dawn on me — I still loved what I did. The turn of events at Apple had not changed that one bit. I had been rejected, but I was still in love. And so I decided to start over.
I didn't see it then, but it turned out that getting fired from Apple was the best thing that could have ever happened to me. The heaviness of being successful was replaced by the lightness of being a beginner again, less sure about everything. It freed me to enter one of the most creative periods of my life.
During the next five years, I started a company named NeXT, another company named Pixar, and fell in love with an amazing woman who would become my wife. Pixar went on to create the worlds first computer animated feature film, Toy Story, and is now the most successful animation studio in the world. In a remarkable turn of events, Apple bought NeXT, I returned to Apple, and the technology we developed at NeXT is at the heart of Apple's current renaissance. And Laurene and I have a wonderful family together.
I'm pretty sure none of this would have happened if I hadn't been fired from Apple. It was awful tasting medicine, but I guess the patient needed it. Sometimes life hits you in the head with a brick. Don't lose faith. I'm convinced that the only thing that kept me going was that I loved what I did. You've got to find what you love. And that is as true for your work as it is for your lovers. Your work is going to fill a large part of your life, and the only way to be truly satisfied is to do what you believe is great work. And the only way to do great work is to love what you do. If you haven't found it yet, keep looking. Don't settle. As with all matters of the heart, you'll know when you find it. And, like any great relationship, it just gets better and better as the years roll on. So keep looking until you find it. Don't settle.
My third story is about death.
When I was 17, I read a quote that went something like: "If you live each day as if it was your last, someday you'll most certainly be right." It made an impression on me, and since then, for the past 33 years, I have looked in the mirror every morning and asked myself: "If today were the last day of my life, would I want to do what I am about to do today?" And whenever the answer has been "No" for too many days in a row, I know I need to change something.
Remembering that I'll be dead soon is the most important tool I've ever encountered to help me make the big choices in life. Because almost everything — all external expectations, all pride, all fear of embarrassment or failure - these things just fall away in the face of death, leaving only what is truly important. Remembering that you are going to die is the best way I know to avoid the trap of thinking you have something to lose. You are already naked. There is no reason not to follow your heart.
About a year ago I was diagnosed with cancer. I had a scan at 7:30 in the morning, and it clearly showed a tumor on my pancreas. I didn't even know what a pancreas was. The doctors told me this was almost certainly a type of cancer that is incurable, and that I should expect to live no longer than three to six months. My doctor advised me to go home and get my affairs in order, which is doctor's code for prepare to die. It means to try to tell your kids everything you thought you'd have the next 10 years to tell them in just a few months. It means to make sure everything is buttoned up so that it will be as easy as possible for your family. It means to say your goodbyes.
I lived with that diagnosis all day. Later that evening I had a biopsy, where they stuck an endoscope down my throat, through my stomach and into my intestines, put a needle into my pancreas and got a few cells from the tumor. I was sedated, but my wife, who was there, told me that when they viewed the cells under a microscope the doctors started crying because it turned out to be a very rare form of pancreatic cancer that is curable with surgery. I had the surgery and I'm fine now.
This was the closest I've been to facing death, and I hope its the closest I get for a few more decades. Having lived through it, I can now say this to you with a bit more certainty than when death was a useful but purely intellectual concept:
No one wants to die. Even people who want to go to heaven don't want to die to get there. And yet death is the destination we all share. No one has ever escaped it. And that is as it should be, because Death is very likely the single best invention of Life. It is Life's change agent. It clears out the old to make way for the new. Right now the new is you, but someday not too long from now, you will gradually become the old and be cleared away. Sorry to be so dramatic, but it is quite true.
Your time is limited, so don't waste it living someone else's life. Don't be trapped by dogma — which is living with the results of other people's thinking. Don't let the noise of others' opinions drown out your own inner voice. And most important, have the courage to follow your heart and intuition. They somehow already know what you truly want to become. Everything else is secondary.
When I was young, there was an amazing publication called The Whole Earth Catalog, which was one of the bibles of my generation. It was created by a fellow named Stewart Brand not far from here in Menlo Park, and he brought it to life with his poetic touch. This was in the late 1960's, before personal computers and desktop publishing, so it was all made with typewriters, scissors, and polaroid cameras. It was sort of like Google in paperback form, 35 years before Google came along: it was idealistic, and overflowing with neat tools and great notions.
Stewart and his team put out several issues of The Whole Earth Catalog, and then when it had run its course, they put out a final issue. It was the mid-1970s, and I was your age. On the back cover of their final issue was a photograph of an early morning country road, the kind you might find yourself hitchhiking on if you were so adventurous. Beneath it were the words: "Stay Hungry. Stay Foolish." It was their farewell message as they signed off. Stay Hungry. Stay Foolish. And I have always wished that for myself. And now, as you graduate to begin anew, I wish that for you.
Stay Hungry. Stay Foolish.
Thank you all very much.
财富中文版翻译:
http://www.fortunechina.com/magazine/c/2005-11/01/content_1498.htm
“好学若饥、谦卑若愚”
作者: JSteve Jobs
毕 业典礼上的演讲大都轻松愉快,而且容易被遗忘。然而,史蒂夫•乔布斯(Steve Jobs)今年 6 月在斯坦福大学的演讲在经过了一个夏天之后依然为人所提及。这位苹果电脑公司(Apple Computer)和皮克斯动画公司(Pixar Animation Studios)首席执行官在演讲中谈到了他生活中的三次体验,这三次体验不仅在斯坦福大学的毕业生、也在硅谷乃至其他地方的技术同行中引起了巨大反响。他们将他的演讲登在互联网上,在博客上展开讨论,通过电子邮件互相发送,在全球传阅。经乔布斯本人同意,我们在此刊登全文,以飨还没有看到该演讲的读者。
很荣幸和大家一道参加这所世界上最好的一座大学的毕业典礼。我大学没毕业,说实话,这是我第一次离大学毕业典礼这么近。今天我想给大家讲三个我自己的故事,不讲别的,也不讲大道理,就讲三个故事。
第一个故事讲的是点与点之间的关系。我在里德学院(Reed College)只读了六个月就退学了,此后便在学校里旁听,又过了大约一年半,我彻底离开。那么,我为什么退学呢?
这得从我出生前讲起。我的生母是一名年轻的未婚在校研究生,她决定将我送给别人收养。她非常希望收养我的是有大学学历的人,所以把一切都安排好了,我一出生就交给一对律师夫妇收养。没想到我落地的霎那间,那对夫妇却决定收养一名女孩。就这样,我的养父母─当时他们还在登记册上排队等著呢─半夜三更接到一个电话: “我们这儿有一个没人要的男婴,你们要么?”“当然要”他们回答。但是,我的生母后来发现我的养母不是大学毕业生,我的养父甚至连中学都没有毕业,所以她拒绝在最后的收养文件上签字。不过,没过几个月她就心软了,因为我的养父母许诺日后一定送我上大学。
17 年后,我真的进了大学。当时我很天真,选了一所学费几乎和斯坦福大学一样昂贵的学校,当工人的养父母倾其所有的积蓄为我支付了大学学费。读了六个月后,我却看不出上学有什么意义。我既不知道自己这一生想干什么,也不知道大学是否能够帮我弄明白自己想干什么。这时,我就要花光父母一辈子节省下来的钱了。所以,我决定退学,并且坚信日后会证明我这样做是对的。当年做出这个决定时心里直打鼓,但现在回想起来,这还真是我有生以来做出的最好的决定之一。从退学那一刻起,我就可以不再选那些我毫无兴趣的必修课,开始旁听一些看上去有意思的课。 那些日子一点儿都不浪漫。我没有宿舍,只能睡在朋友房间的地板上。我去退还可乐瓶,用那五分钱的押金来买吃的。每个星期天晚上我都要走七英里,到城那头的黑尔-科里施纳礼拜堂去,吃每周才能享用一次的美餐。我喜欢这样。我凭著好奇心和直觉所干的这些事情,有许多后来都证明是无价之宝。我给大家举个例子:
当时,里德学院的书法课大概是全国最好的。校园里所有的公告栏和每个抽屉标签上的字都写得非常漂亮。当时我已经退学,不用正常上课,所以我决定选一门书法课,学学怎么写好字。我学习写带短截线和不带短截线的印刷字体,根据不同字母组合调整其间距,以及怎样把版式调整得好上加好。这门课太棒了,既有历史价值,又有艺术造诣,这一点科学就做不到,而我觉得它妙不可言。
当时我并不指望书法在以后的生活中能有什么实用价值。但是,十年之后,我们在设计第一台 Macintosh 计算机时,它一下子浮现在我眼前。于是,我们把这些东西全都设计进了计算机中。这是第一台有这么漂亮的文字版式的计算机。要不是我当初在大学里偶然选了这么一门课,Macintosh 计算机绝不会有那么多种印刷字体或间距安排合理的字号。要不是 Windows 照搬了 Macintosh,个人电脑可能不会有这些字体和字号。要不是退了学,我决不会碰巧选了这门书法课,个人电脑也可能不会有现在这些漂亮的版式了。当然,我在大学里不可能从这一点上看到它与将来的关系。十年之后再回头看,两者之间的关系就非常、非常清楚了。 你们同样不可能从现在这个点上看到将来;只有回头看时,才会发现它们之间的关系。所以,要相信这些点迟早会连接到一起。你们必须信赖某些东西─直觉、归宿、生命,还有业力,等等。这样做从来没有让我的希望落空过,而且还彻底改变了我的生活。
我的第二个故事是关于好恶与得失。幸运的是,我在很小的时候就发现自己喜欢做什么。我在 20 岁时和沃兹(Woz,苹果公司创始人之一 Wozon 的昵称─译注)在我父母的车库里办起了苹果公司。我们干得很卖力,十年后,苹果公司就从车库里我们两个人发展成为一个拥有 20 亿元资产、4,000 名员工的大企业。那时,我们刚刚推出了我们最好的产品─ Macintosh 电脑─那是在第 9 年,我刚满 30 岁。可后来,我被解雇了。你怎么会被自己办的公司解雇呢?是这样,随著苹果公司越做越大,我们聘了一位我认为非常有才华的人与我一道管理公司。在开始的一年多里,一切都很顺利。可是,随后我俩对公司前景的看法开始出现分歧,最后我俩反目了。这时,董事会站在了他那一边,所以在 30 岁那年,我离开了公司,而且这件事闹得满城风雨。我成年后的整个生活重心都没有了,这使我心力交瘁。
一连几个月,我真的不知道应该怎么办。我感到自己给老一代的创业者丢了脸─因为我扔掉了交到自己手里的接力棒。我去见了戴维•帕卡德(David Packard,惠普公司创始人之一─译注)和鲍勃•诺伊斯(Bob Noyce,英特尔公司创建者之一─译注),想为把事情搞得这么糟糕说声道歉。这次失败弄得沸沸扬扬的,我甚至想过逃离硅谷。但是,渐渐地,我开始有了一个想法─我仍然热爱我过去做的一切。在苹果公司发生的这些风波丝毫没有改变这一点。我虽然被拒之门外,但我仍然深爱我的事业。于是,我决定从头开始。
虽然当时我并没有意识到,但事实证明,被苹果公司炒鱿鱼是我一生中碰到的最好的事情。尽管前景未卜,但从头开始的轻松感取代了保持成功的沉重感。这使我进入了一生中最富有创造力的时期之一。 在此后的五年里,我开了一家名叫 NeXT 的公司和一家叫皮克斯的公司,我还爱上一位了不起的女人,后来娶了她。皮克斯公司推出了世界上第一部用电脑制作的动画片《玩具总动员》(Toy Story),它现在是全球最成功的动画制作室。世道轮回,苹果公司买下 NeXT 后,我又回到了苹果公司,我们在 NeXT 公司开发的技术成了苹果公司这次重新崛起的核心。我和劳伦娜(Laurene)也建立了美满的家庭。
我确信,如果不是被苹果公司解雇,这一切决不可能发生。这是一剂苦药,可我认为苦药利于病。有时生活会当头给你一棒,但不要灰心。我坚信让我一往无前的唯一力量就是我热爱我所做的一切。所以,一定得知道自己喜欢什么,选择爱人时如此,选择工作时同样如此。工作将是生活中的一大部分,让自己真正满意的唯一办法,是做自己认为是有意义的工作;做有意义的工作的唯一办法,是热爱自己的工作。你们如果还没有发现自己喜欢什么,那就不断地去寻找,不要急于做出决定。就像一切要凭著感觉去做的事情一样,一旦找到了自己喜欢的事,感觉就会告诉你。就像任何一种美妙的东西,历久弥新。所以说,要不断地寻找,直到找到自己喜欢的东西。不要半途而废。 我的第三个故事与死亡有关。17 岁那年,我读到过这样一段话,大意是:“如果把每一天都当作生命的最后一天,总有一天你会如愿以偿。”我记住了这句话,从那时起,33 年过去了,我每天早晨都对著镜子自问: “假如今天是生命的最后一天,我还会去做今天要做的事吗?”如果一连许多天我的回答都是“不”,我知道自己应该有所改变了。
让我能够做出人生重大抉择的最主要办法是,记住生命随时都有可能结束。因为几乎所有的东西─所有对自身之外的希求、所有的尊严、所有对困窘和失败的恐惧─在死亡来临时都将不复存在,只剩下真正重要的东西。记住自己随时都会死去,这是我所知道的防止患得患失的最好方法。你已经一无所有了,还有什么理由不跟著自己的感觉走呢。
大约一年前,我被诊断患了癌症。那天早上七点半,我做了一次扫描检查,结果清楚地表明我的胰腺上长了一个瘤子,可那时我连胰腺是什么还不知道呢!医生告诉我说,几乎可以确诊这是一种无法治愈的恶性肿瘤,我最多还能活 3 到 6 个月。医生建议我回去把一切都安排好,其实这是在暗示“准备后事”。也就是说,把今后十年要跟孩子们说的事情在这几个月内嘱咐完;也就是说,把一切都安排妥当,尽可能不给家人留麻烦;也就是说,去跟大家诀别。
那一整天里,我的脑子一直没离开这个诊断。到了晚上,我做了一次组织切片检查,他们把一个内窥镜通过喉咙穿过我的胃进入肠子,用针头在胰腺的瘤子上取了一些细胞组织。当时我用了麻醉剂,陪在一旁的妻子后来告诉我,医生在显微镜里看了细胞之后叫了起来,原来这是一种少见的可以通过外科手术治愈的恶性肿瘤。我做了手术,现在好了。
这是我和死神离得最近的一次,我希望也是今后几十年里最近的一次。有了这次经历之后,现在我可以更加实在地和你们谈论死亡,而不是纯粹纸上谈兵,那就是: 谁都不愿意死。就是那些想进天堂的人也不愿意死后再进。然而,死亡是我们共同的归宿,没人能摆脱。我们注定会死,因为死亡很可能是生命最好的一项发明。它推进生命的变迁,旧的不去,新的不来。现在,你们就是新的,但在不久的将来,你们也会逐渐成为旧的,也会被淘汰。对不起,话说得太过分了,不过这是千真万确的。
人生苦短,不要浪费时间活在别人的阴影里。不要囿于成见,那是在按照别人设想的结果而活。不要让别人观点的聒噪声淹没自己的心声。最主要的是,要有跟著自己感觉和直觉走的勇气。无论如何,感觉和直觉早就知道你到底想成为什么样的人,其他都是次要的。
我年轻时有一本非常好的刊物,叫《全球概览》(The Whole Earth Catalog),这是我那代人的宝书之一,创办人名叫斯图尔特•布兰德(Stewart Brand),就住在离这儿不远的门洛帕克市。他用诗一般的语言把刊物办得生动活泼。那是 20 世纪 60 年代末,还没有个人电脑和桌面印刷系统,全靠打字机、剪刀和宝丽莱照相机(Polaroid)。它就像一种纸质的 Google,却比 Google 早问世了 35 年。这份刊物太完美了,查阅手段齐备、构思不凡。
斯图尔特和他的同事们出了好几期《全球概览》,到最后办不下去时,他们出了最后一期。那是 20 世纪 70 年代中期,我也就是你们现在的年纪。最后一期的封底上是一张清晨乡间小路的照片,就是那种爱冒险的人等在那儿搭便车的那种小路。照片下面写道: 好学若饥、谦卑若愚。那是他们停刊前的告别辞。求知若渴,大智若愚。这也是我一直想做到的。眼下正值诸位大学毕业、开始新生活之际,我同样愿大家: 好学若饥、谦卑若愚。
谢谢大家。
译者: 于少蔚
Video from Campus net of Stanford Univ.
http://news-service.stanford.edu/news/2005/june15/grad-061505.html
http://www.stanford.edu/dept/news/report/news/2005/june15/videos/51.html
2006年10月20日星期五
2006年10月18日星期三
在路上,一种迷醉的方式
在路上,一种迷醉的方式
我的一位朋友,当时是在加拿大读书的中国留学生,有那么一段轶事一直被大家传来传去:据说是在刚刚拿下驾驶执照后不久,开着一辆二手的跑车沿安大略湖附近的一条高速公路兜风。这位朋友在国内一向是晕车的,但在那个枫叶满眼的深秋时节,他竟然根本就忘了自己是谁了。那满视野的、从天际漫过来的、又在车速中呼啦啦消逝了的红枫带给了他一种难以承受的快感,他哭了。一辆警车拦住了它,警察给他开了超速的罚单,并说:再逮到你就调销你的执照。他默默接过罚单,腮上依然挂着感动的泪。很快,他又风驰电掣起来,警车第二次追上他,说:你的执照被临时调销了,下次逮到你你就是违法了。
“为什么缓慢的乐趣消失了呢?从前那些闲逛的人们都到哪里去了呢?那些民谣小曲中所歌咏的漂泊的英雄,那些游荡于磨坊、风车之间,酣睡在星空下的流浪者,他们到那里去了?他们随着乡间小路、随着草原和林中隙地、随着大自然消失了吗?”(米兰·昆德拉《缓慢》)
在车速缓慢的瞬间,那一连串疑问充塞进了米兰·昆德拉的“那辆面对车流而无法超前的车子”里。显然,比回答它们更为便捷的方式是祈祷道路畅通。车流动起来,你一踩油门,把它们尽数甩出窗外,让它们继续风中的漂泊。O.K.,让我们为技术革命献给人类的这种迷醉的方式欢呼(或随你怎么样)吧!
上路:现代主义的初夜
人生或许可以看作经历的不断迭加的过程,但人生感受却并不是随着经历的积累而无限膨胀,因为人们无比看重一些经验的开端——因为它们不同于以往,甚至也不再重复。在这个意义上,我愿意把人类驾车上路的初次感受形容为“现代主义的初夜。”
在此之前,速度是一种传说和想像,而远未成为一种亲身体验。1896年,在一辆福特汽车的轮子上,现代主义进入了成熟期。从那时开始,人们重新感觉外界社会,运动和变迁成了生活的基调,审美观念的性质也发生了激烈而迅速的改变。“运动和高度的时空错位”(丹尼尔·贝尔)是这个在汽车轮子上一举而成为现代人的刹那感受,并且标志了他和前人情感经验的最大不同。从此以后,人类的旅行速度有史以来第一次超过了徒步和骑牲畜的速度,他们获得了景物变幻摇移的感觉,以及万物倏忽而过的迷离。
一位美国人曾经对社会学家说:“你们干吗要研究这个国家变化的原因?……我可以告诉你发生了什么事,只用4个字母:A—U—T—O(汽车)!”丹尼尔·贝尔在《资本主义文化矛盾》中引述说,传统道德观之所以令人压抑,很大程度上是因为人们无法逃离封闭的居住环境。在那里,每个人都按规范生活,要活给别人一个体面,“无法自得其乐,只能靠干预别人享乐来得到仅有的满足。”在这点上,汽车的出现成了技术彻底改革社会习惯的主要方式,它提供了在路上的层出不穷的事物和纷繁多变的局面,提供了无穷的可能性和对新的经验的剧烈渴求。世界愈来愈广泛地进入普通人的认识范围,这成了我们这个时代的特征。
既然把人类的初次驾车上路比喻成“现代主义的初夜”,那么把一个人第一次开车的个人体验形容作他(她)个人的初夜应该是顺理成章的,至少那一天对我来说是非同小可的战栗----我招来了警察,因为车子摇晃而被误认为酒后开车。
开过车的人一定有这种感受,在车外看公路上川留不息的车流,尤其是看高速公路上风驰电掣的景象,你会有一种不安全感,但你一旦钻入车中,开动引擎,跻身其间,那种不安全感就会消失殆尽,及至上了高速公路,身无旁碍而一泻千里的时候,你和你敬畏的速度融为了一体。——“技术的森然无人性,与兴奋的狂热火炎”,米兰·昆德拉是这样描述速度的:“倾身跨在摩托车上的骑士只专注于正在飞跃的那秒种;他紧紧抓住这个与过去、与未来都切断的一瞬;他自时间的持续中抽离;他处于时间之外;换句话说,他处于一种迷醉的状态……”说置身于汽车的速度中是一种迷醉的方式是因为“跑步者始终待在自己的身体中,必须不断地想到自己的脚步和喘息;他跑步时感觉到自己的体重、年纪,比任何时候都深切地意识到自我和生命的时间。当人被机器赋予了速度的快感之后,一切便改变了;自此之后,他的身体处在游戏之外,他投身于一种无关肉体、速度本身、以及令人兴奋的速度感之中。”
这样说来,如今世界上几乎每分钟都有人在公路上惨死、而人们却仍然纷纷钻入车中就没有什么不好理解的了。更干脆地说,如果你想摆脱不安全感,摆脱问题,那就钻入车中、上路。
路上:距离的消蚀
电影《Forrester Gump》让Forrester Gump参与了美国社会几十年来所有的重大历史时刻,却始终没有让它去驾驶汽车,确保了他身上的那份现代人失掉了的童贞,这就是为什么Forrester Gump在我们眼里有一种抹不掉的田园感觉。
Forrester Gump善跑,奔跑是他认知和接近生活的途径。但对于加入到他的奔跑中的那群现代人来说,奔跑已经不再可能接近什么,汽车和技术的速度早已使他们超越了一切。距离(地理的、心理的、审美的)消蚀了,时间与空间不再是现代人可以依赖的坐标,pass,pass,现代主义在一味的反叛激情中丧失了张力,在探索自我和外部世界的活动中,任何可能的事都已实现。那些追随Forrester Gump,对他的奔跑进行着笨拙的摹仿的后现代一族,对他们来说,奔跑已不再造就任何意义:技术的速度已把他们放置到路上,让每时每刻戏剧化。他们在奔跑中要领受的无非是一种戏剧性感受。
现代主义在它初夜的新奇与刺激过后,就被无穷无尽的重复经验所覆盖----以此来解释后现代人弃车奔跑的动机,恐怕稍嫌尴尬却并不过分吧!
或许正因为如此,米兰·昆德拉不再兀自在“晚霞褪去时”感叹“一切都辉映在乡愁之中”(《生活在别处》),他甚至根本就不再走下那辆车。在《缓慢》一书的结尾,在一段车速的缓慢的间隔过后,作者收起了他“那个终将隐没在光里的夜的记忆。”最后,作者说:
“没有来日。
没有听众。
拜托,朋友,高兴点。我有种模糊的感觉,就是你寻得快乐的能力是我们唯一的希望。
马车消失在雾中,我发动了车子。”
2006年10月17日星期二
扬州
送孟浩然之广陵[唐]李白
故人西辞黄鹤楼,烟花三月下扬州。孤帆远影碧空尽,惟见长江天际流。
解闷十二首 [唐]杜甫
商胡离别下扬州,忆上西陵故驿楼。为问淮南米贵贱,老夫乘兴欲东遊。
忆扬州[唐]徐凝
萧娘脸下难胜泪,桃叶眉头易得愁,天下三分明月夜,二分无赖在扬州。
(我读过的版本前面两句好像是这样的:萧娘脸薄难胜泪,柳叶眉长易觉愁)
寄扬州韩绰判官[唐]杜牧
青山隐隐水迢迢,秋尽江南草木凋,二十四桥明月夜,玉人何处教吹箫。
邗 沟 [宋]秦观
霜落邗沟积水清,寒星无数傍船明。菰蒲深处疑无地,忽有人家笑语声。
过扬州[清]龚自珍
春灯如雪浸阑舟,不载江南半点愁。谁信寻春此狂客,一茶一偈到扬州。
同乐天登棲灵寺塔[唐]刘禹锡
步步相携不觉难,九层云外倚栏杆;忽然笑语半天上,无数游人举眼看。
平山堂观雨[宋] 释道潜
午枕藜床梦忽惊,柳边雷送雨如倾。蜀冈西望芜城路,银竹森森十里横。
与梦得同登栖灵寺塔[唐]白居易
半月腾腾在广陵,何楼何塔不同登。共怜筋力犹堪任,上到栖灵第九层。
纵游淮南[唐] 张祜
十里长街市井连,月明桥上看神州。人生只合扬州死,禅智山光好墓田。
赠别二首[唐] 杜牧
(一)娉娉袅袅十三余,豆蔻梢头二月初。春风十里扬州路,卷上珠帘总不如。
(二)多情却似总无情,惟觉樽前笑不成。蜡烛有心还惜别,替人垂泪到天明。
遣 怀[唐]杜牧
落魄江湖载酒行,楚腰纤细掌中轻。十年一觉扬州梦,赢得青楼薄幸名。
还自广陵[唐]秦观
天寒水鸟自相依,十百为群戏落晖。过尽行人都不起,忽闻冰响一齐飞。
宿扬州[唐] 李绅
江横渡阔烟波晚,潮过金陵落叶秋。嘹唳塞鸿经楚泽,浅深红树见扬州。亱橘灯火连星汉,水郭帆墙近斗牛。今日市朝风俗变,不须开口问迷楼。
过广陵驿[元] 萨都拉
秋风江上芙蓉老,阶下数株黄菊鲜;落叶正飞扬子波,行人又上广陵船。寒砧万户月如水,老雁一声霜满天;自笑棲迟淮海客,十年心事一灯前。
题扬州禅智寺[唐]杜牧
雨过一蝉噪,飘萧松桂秋。青苔满阶砌,白鸟故迟留。暮霭生深树,斜阳下小楼。谁知竹西路,歌吹是扬州。
扬州春词[唐]姚谷
广陵寒食天,无雾又无烟。暖日凝花柳,春风散管弦。园林多是宅,车马少于船。莫唤游人住,游人闲未眠。
http://www.whyz.com.cn/talk.php?col=29&file=72
故人西辞黄鹤楼,烟花三月下扬州。孤帆远影碧空尽,惟见长江天际流。
解闷十二首 [唐]杜甫
商胡离别下扬州,忆上西陵故驿楼。为问淮南米贵贱,老夫乘兴欲东遊。
忆扬州[唐]徐凝
萧娘脸下难胜泪,桃叶眉头易得愁,天下三分明月夜,二分无赖在扬州。
(我读过的版本前面两句好像是这样的:萧娘脸薄难胜泪,柳叶眉长易觉愁)
寄扬州韩绰判官[唐]杜牧
青山隐隐水迢迢,秋尽江南草木凋,二十四桥明月夜,玉人何处教吹箫。
邗 沟 [宋]秦观
霜落邗沟积水清,寒星无数傍船明。菰蒲深处疑无地,忽有人家笑语声。
过扬州[清]龚自珍
春灯如雪浸阑舟,不载江南半点愁。谁信寻春此狂客,一茶一偈到扬州。
同乐天登棲灵寺塔[唐]刘禹锡
步步相携不觉难,九层云外倚栏杆;忽然笑语半天上,无数游人举眼看。
平山堂观雨[宋] 释道潜
午枕藜床梦忽惊,柳边雷送雨如倾。蜀冈西望芜城路,银竹森森十里横。
与梦得同登栖灵寺塔[唐]白居易
半月腾腾在广陵,何楼何塔不同登。共怜筋力犹堪任,上到栖灵第九层。
纵游淮南[唐] 张祜
十里长街市井连,月明桥上看神州。人生只合扬州死,禅智山光好墓田。
赠别二首[唐] 杜牧
(一)娉娉袅袅十三余,豆蔻梢头二月初。春风十里扬州路,卷上珠帘总不如。
(二)多情却似总无情,惟觉樽前笑不成。蜡烛有心还惜别,替人垂泪到天明。
遣 怀[唐]杜牧
落魄江湖载酒行,楚腰纤细掌中轻。十年一觉扬州梦,赢得青楼薄幸名。
还自广陵[唐]秦观
天寒水鸟自相依,十百为群戏落晖。过尽行人都不起,忽闻冰响一齐飞。
宿扬州[唐] 李绅
江横渡阔烟波晚,潮过金陵落叶秋。嘹唳塞鸿经楚泽,浅深红树见扬州。亱橘灯火连星汉,水郭帆墙近斗牛。今日市朝风俗变,不须开口问迷楼。
过广陵驿[元] 萨都拉
秋风江上芙蓉老,阶下数株黄菊鲜;落叶正飞扬子波,行人又上广陵船。寒砧万户月如水,老雁一声霜满天;自笑棲迟淮海客,十年心事一灯前。
题扬州禅智寺[唐]杜牧
雨过一蝉噪,飘萧松桂秋。青苔满阶砌,白鸟故迟留。暮霭生深树,斜阳下小楼。谁知竹西路,歌吹是扬州。
扬州春词[唐]姚谷
广陵寒食天,无雾又无烟。暖日凝花柳,春风散管弦。园林多是宅,车马少于船。莫唤游人住,游人闲未眠。
http://www.whyz.com.cn/talk.php?col=29&file=72
books today, 2006.10.17
harvard business review Chinese Edition, for special discount, 10
说戏,汪曾祺,山东画报出版社,和五味,人间草木,文与画,同一系列
经济行为与制度,冰岛××××,商务印书馆
酸甜苦辣咸,唐鲁孙,广西师范大学出版社
唐鲁孙谈吃,唐鲁孙,广西师范大学出版社
这是你的船,Michael Abrashoff,机械工业出版社
such a pity that i have no time to read them all
说戏,汪曾祺,山东画报出版社,和五味,人间草木,文与画,同一系列
经济行为与制度,冰岛××××,商务印书馆
酸甜苦辣咸,唐鲁孙,广西师范大学出版社
唐鲁孙谈吃,唐鲁孙,广西师范大学出版社
这是你的船,Michael Abrashoff,机械工业出版社
such a pity that i have no time to read them all
2006年10月14日星期六
2006年10月12日星期四
法律电影
法律电影在欧美电影里的确是非常引人注目的一块地盘。
我自己随便想想都可以列出一串来,我最喜欢的是《肖申克的救赎》和《因父之名》,同是法律电影,主题大相径庭。其他还有比如《魔鬼代言人》等等。这里有篇法律电影的文章,觉得不错。特地帖一下。
对了,还有Julia Roberts的《永不妥协》,再加上“The Shawshank Redemption”, "In the Name of Father",让我百看不厌。
揭开法律电影的面纱
几乎每个法院的建筑上都有天平的标志。它代表了正义和公正。在法庭上,人性的高尚与丑恶,勇气与恐惧,各种观念的纠葛,无法掩饰,无法作伪地展现出来;而激烈的庭辩中又处处闪烁着智慧的光彩。所以一直很喜欢看法律题材的电影,也就是所谓的法庭片。银幕上,派克曾在这里面色凝重地为黑人伸张正义;科斯特纳曾在这里作出令人喘不过气来的陈述,为自由大声疾呼;马特·达蒙曾在这里为儿童争取权益;汤姆·克鲁斯曾在这里为揭露律师事务所的黑幕绞尽脑汁……
然而,由于国情的不同,由于法庭片涉及了太多的专业知识,它又是那么看起来云里雾里的一种影片。在那些精彩的影像之外,我们脑海中总悬着一个个大大的问号。现在,让我们来揭开法律电影面纱的一角,更深入的窥探一下它的容颜吧。
判例制(Prejudication)
还记得当年香港有一部影片叫《法外情》么?此片红极一时,引出后来《法内情》、《法中情》等一批法庭片。当时,既为被案情的起伏和双方律师的唇枪舌剑所吸引,又为法理中透出的人情所感动。不过,当时很不解的是,那些法官、律师何以要戴着可笑的银色假发?为什么律师要对着那两排普通百姓侃侃而谈?
后来才明白,香港一直是英国的殖民地,法律体系自然也来自英国。英和美国的法律体系被称为海洋法系(也叫英美法系)。那些假发啊陪审团啊都是英美法系的特色。开始时美国跟英国有样学样,在像《帕拉亭案件》这样的好莱坞老片中,假发、律师袍等等一个都不能少。后来美国则变得日益开通散漫,不像英国人那样拘禁保守--法官不用在大热天也戴着假发,律师穿个西服似乎比穿律师袍更有风度嘛。至于采用了大陆法系的欧洲各国(最有代表性的是法、德),还有亚洲的日本、中国大陆(包括台湾),都因为没有这种容易出彩的法律体系而痛失了拍出精彩法庭片的先天条件。
当然,两个法系最大的不同倒还不在法官律师的穿着打扮,而是法的渊源,也就是以什么作为断案依据。英美法系采取的是判例制,拿以前类似的案件作为审判的依据。你常常会看到影片里的美国律师狂查资料,找的就是以前的判例。在《造雨人》里面,马特·达蒙就是找到了一个被人遗忘的相似案例,由此反败为胜的。这在客观上也帮了电影一个忙:在法庭上谈谈以前的案子总显得有意思一些吧,大陆法系的国家只能以立法为判案依据,随你再如何声情并茂,在银幕上背诵法律条文还不让观众都睡死过去?
陪审团(Jury)
为什么影片中的律师总是对着几排陪审员滔滔不绝的说,而不去理会法官?
为什么律师总说他们相信人民,相信陪审员会做出公正的判决,而不是法官?
为什么律师总说这是我挑的陪审团,胜利应该是我的?
太多的为什么让我们看美国的法庭片总不是那么酣畅淋漓。这陪审团到底是怎么回事?难道随便抓几个人让他们决定有罪无罪是种好的法律制度么?
陪审制度可以说是当今美国司法制度中最为重要和独特的一部分,也是海洋法系与大陆法系的重要区别(当年,美国造英国的反,原因之一就是英国当局剥夺美国人应当享有的陪审团审判权利呢!)。在美国法庭审理中取胜的关键是说服陪审团,因为最后做出裁决的是陪审团,而不是高高在上的法官。陪审团裁决被告有罪还是无罪,然后由法官量刑。法官只是一个控制法庭节奏、维持秩序,决定陪审团应该知道什么,什么证据能够呈堂,对证人的提问是否恰当的裁判。由最普通公民组成的陪审团来决定一个嫌犯的命运,这样做符合美国的平等公正精神。所以,能否组成一个对自己有利的陪审团将直接影响案件的结果。
作为一个美国公民,他有可能在一天醒来以后接到个电话,要求他担任陪审员,这是他的义务。法官是从法院管区内通过社会保险号码或者电话号码黄页随机挑出几倍于陪审团所需的人数参加初选的。候选陪审员应当在种族、年龄、性别和其他方面准确反映社会中各阶层的状况。能成为陪审员也非常不容易,与案件有关的人都不行,有职业思维习惯的,例如律师、医生等也不能担任。然后,律师会通过几个简单的问题来进一步选择陪审员。这主要是为了删除那些因为环境和经历而有思维倾向或种族倾向的人,以防止被告受到不公正的裁判。有一定思维定势的人确实不利于最终裁决的公正性,比如在经典老片《十二怒汉》末尾,陪审团其他成员最后都已转变立场,只有3号陪审员死死咬定被控杀人的贫民区男孩有罪,原来他因为自己的儿子离家出走,所以迁怒于所有的不良少年。在《魔鬼代言人》这部被认为是美国辛普森杀妻案翻版的影片中,基努·里夫斯挑选陪审团成员的戏和现实中辛普森杀妻案的选择过程也极为相似:如果陪审员是有过被丈夫殴打或者虐待经历的女性,那么一般就会认为她已有了思维倾向,肯定会被辨方删掉,而控方就会希望她留下。例如,基努·里夫斯在挑选陪审员时认为那个自制衣服的黑人会是一个愤世嫉俗、厌恶权贵的人;那个一本正经的天主教徒从表情上看极为想成为陪审员,让不忠的男人得到惩罚。通过对话,候选陪审员的穿着甚至一些小动作来确定陪审员的思维倾向全靠律师的职业素养和直觉。到最后,一般会选出12名正式和12名候补陪审员,在正式陪审员因为一些特殊原因退出的时候,就需要候补的补上去,这24名陪审员都要经过控辩双方的认可。
在有些时候,如果新闻媒体的报道和社会舆论会妨碍到陪审员们做出正确的判断,会由美国政府出钱把陪审员隔离起来,严禁与外界接触,打电话也是绝对被禁止的(《十二怒汉》中陪审员们所有与外界的交流都是由一个法警完成的),政府用纳税人的钱供他们吃住,还给这些陪审员一天几个美金的补助,直到案件结束,从这儿也不难理解为什么美国案件的审理花费会那么高。雪儿主演的《嫌疑犯》中,整个陪审团都被隔离了,因为法官认为陪审团成员与律师私下接触过,不隔离会影响案件的审理。《造雨人》里也出现过相关的情节:马特·达蒙饰演的小律师做出和某陪审团成员发生接触的假相,引得对方律师在法庭上质疑该名陪审员的品质,结果竟被对方当庭痛揍。影片藉此来表现初出茅庐的新手如何另辟怪招和那些"老江湖"、大律师斗智斗勇。
判定被告有罪,必须是12个陪审员的一致意见。影片《十二怒汉》的基本情节就架构在这一原则之上。影片开始时,12个陪审员中有11个一致通过被告有罪,只有八号陪审员亨利·方达提出异议。在接下来将近二十四个小时的时间里,八号陪审员围绕着凶器弹簧刀是否独一无二,火车呼啸而过的环境下喊叫能否被听清,楼下老头的证词在时间上的矛盾,凶手握刀姿势的差异,以及邻居目击者在视力上的缺陷,提出一连串疑点,最终艰难地说服了众人。只要有一个人不同意,只要有一个人认为检察官的证据还没有达到"超越合理的怀疑"的地步,被告的罪就判不下来。这也是美国刑事案件审判的定罪率很低的原因。
陪审团所做的工作不仅仅是裁定"有罪"或"无罪",更重要是贯彻社会的价值观念。由于陪审团的成员是从社会各个阶层中选出的,因此陪审团作出的裁定就不同于法官个人的决定,陪审团裁定可能通过一个陪审员反映出社会的普遍价值观念,反映出社会上的民意对某一种行为是支持同情还是蔑视遣责。这在移民社会的美国尤其重要。
辨诉交易(Plea Bargaining)
毫无疑问,在大部分的美国影片中,律师都是以唯利是图、狡诈和善于说谎的面貌出现的。太多的法庭片里都有原本尖锐对立的控辨双方开庭前在一起讨价还价的场面,这更使我们对美国式坏律师的印象更为深刻,以为美国的律师和检察官个个都是进行私下交易的龌龊小人。像《好人寥寥》中就出现控方要求辨方用认罪来换取服刑半年后假释出狱的场景。当然这全都是一种误解,它就涉及到了西方法律中独有的辨诉交易(Plea Bargaining),也就是在法官开庭审理之前,处于控诉一方的检察官和代表被告人的辩护律师可以进行协商,以检察官撤销指控、降格指控或要求法官从轻判处刑罚为条件,换取被告人的认罪答辩(plea of Guilty)以达到节约诉讼成本,快速结案的目的。
其实从辩诉交易的效果来看,辩诉交易往往对"职业"犯罪人更为有利,而对偶犯和非"职业"型的犯罪人不太公平。因为"职业"犯罪人有更多筹码与检察官讨价还价,在辩诉交易中更能迫使检察官让步,得到更加宽松的处理。而且从犯罪经验来看,"职业"犯罪人知道如何利用手中的信息和检察官讨价还价,即使律师建议他接受交易,他也能够凭经验继续拖延。偶犯和非"职业"型犯罪人则不同,经历刑事程序经验的缺乏使他们更难以忍受审前的羁押,往往急于接受检察官提出的交易条件,结果对自身权利保护不够。
在电影中律师常被称为"诉棍",其实就是因为律师大都唯恐天下不乱,没有诉讼、二审和再审,他们怎么挣钱?为了进入诉讼程序,很多律师都不倾向达成辨诉交易。影片的导演也不喜欢辨诉交易,不论他的主人公律师是好是坏。想想也是,达成了辨诉交易,案件就结束了,电影还怎么演下去?
证人(Witness)
激烈的法庭辩论中,最能体现律师水平的就是律师和证人之间的唇枪舌剑了,但是我们却常听到一些与案件无关的问题,例如你年轻的时候作过什么,说过什么等一些私人问题。接着,你最熟悉的另一个法庭场景就出现了,对方律师站起来大声咆哮着"objection!"向法官表示抗议,接着说"这与本案无关"。有个笑话是说美国律师如果在法庭上走神了,那么他回过神的第一句话肯定是objection,然后就是那句著名的"这与本案无关"。在美国的法庭上被告可以是很悠闲的--他有权保持沉默。苦的是证人,交叉询问制度让他受尽控辩双方刁钻的诘难。律师都要在审理之前教自己的委托人如何回答问题,如何技巧地避而不答。这里面的学问可大了。
律师:"你是否在家里开过有同学参加的派队?"
证人:"是的。"
律师:"在派对上你们是不是做过跟性有关的叫做性幻想的游戏?"
证人:"事情不是这样的。"
律师:"请你回答是还是不是。"
证人:"是,但是只有一次。"
这是《魔鬼代言人》中出现的一段法庭问话,证人是个14岁的女孩。但正是上面这段对话让女孩败诉了,因为它足以表明女孩品行不端,在性方面很放纵。这样,这个老师猥亵女学生的案件当然就不成立了。
律师:"请问你年轻的时候是不是曾经被捕入狱?"
精神病专家:"是的。"
律师:"你能告诉我们你那时是为什么被捕入狱吗?"
精神病专家:"……"
律师:"请你大声的告诉我们是为什么?"
精神病专家:"骚扰女性。"
不说别的,看了上面一段对话,你能相信这个精神病专家的品格和他提供的证词吗?但是如果我告诉你这个被骚扰的女性后来成了这个精神病专家的妻子,你是否又会改变对这个专家的看法并相信他的证言呢?在《杀戮时刻》中,律师马修·麦康瑙希正是用这个专家的证词使陪审团相信了被告塞缪尔·杰克逊的激情杀人。
我们可以这样理解证人的品行在案件审理中的重要性。假如你在一碗面里发现了一条虫子,肯定不会再去品尝这碗面好不好吃,而是把它全部倒掉。当一个人的道德品质都值得怀疑的时候,谁还会相信他的证言?这种侧面进攻的方式是大部分律师最喜欢使用的方式,常常能够达到事半功倍的效果。
当然,证人也有巧妙回答问题的方法。
检察官:"你是否在3月15日那天晚上看到坐在被告席上的那位女性杀了人?"
证人:"我没有在3月15日那天晚上看见那位女性杀人。"
可能看了上面一段话你没有什么感觉,但这却是"隐含确认之否认"(Negative Pregnant),在有法律素养的人来看,这一回答中隐含了他可能在另外的一个晚上看到了杀人情节。当然,检察官的问法很没有水平,证人也可以在不作伪证的情况下逃避做出诚实的回答。
大部分法庭片的庭审场面都不会很长,对话却是字字珠玑,蕴含了编剧的巨大智慧。
歧视(Discrimination)
格里高利·派克在《杀死一只知更鸟》(《To Kill A Mockingbird》)中扮演的为黑人伸张正义的芬奇律师被认为是美国历史最伟大的银幕英雄之一。这种关于种族歧视的影片在美国比比皆是,以至于我们一说起歧视就想起黑人、白人、拉美人、亚裔人在美国那些拎勿清的事体。其实在美国很多我们习以为常的事情都可以控告歧视:性别、年龄、高矮、胖瘦等等,不一而足。例如,如果哪家公司招聘中说只招收35岁以下男性,那么这家公司就等着吃官司吧!因为这是对女性和年龄偏大人士的歧视。曾经也有美国的肥胖人士控告美国的电影院说椅子过于狭小,是对他们的歧视。这其中当然也有对于同性恋以及艾滋病患者的歧视。《费城》中律师事务所解雇了患有艾滋病的汤姆·汉克斯,这是不是能说明汉克斯因为他的一些私人(privacy)情况而受到了歧视(不公正待遇)?像生活中一样,歧视有时是很难界定的,因为你无法把被告的思想、态度呈现在陪审团面前,只有通过已经发生的事实以及这些事实间的关系来证明。
能让陪审团得出安迪受到歧视的原因:1、在事务所得知汤姆·汉克斯身患艾滋病之前,即将提升他为事务所的合伙人之一,也就是进入老板阶层。2、汉克斯在事务所工作表现良好,负责所内最为重要、涉案金额巨大的案件。而结果是:有以上表现的他却被解雇了,中间的转折点就是他们发现他身患艾滋病,同时他又是同性恋。最为有力的证据证言就是事务所合伙人以往对于同性恋的嘲讽和鄙夷,这就给了辩方很大的帮助。
被歧视的人通常都是社会的弱势群体,通过法律诉讼,他们找到做人的尊严和平等。这类影片也往往能唤起人们对被歧视人群的巨大同情甚至强烈的社会责任感,尽管电影采取的是很讨巧的手法。
激情杀人(Kill in the Heat of Passion)
为什么《杀戮时刻》里的塞缪尔·杰克逊枪杀了两个人,还重伤了一个无辜的警察,可却被当庭释放?为什么《肖申克的救赎》里的蒂姆·罗宾斯明明没有杀人,却在律师上下两片嘴的一开一合之间就被判了两个无期徒刑?同样是杀人案,一个是替女儿报仇,一个是因妻子红杏出墙而报复(我们权且当蒂姆·罗宾斯在影片里杀了人),怎么会有这样大的不同?
无辜的蒂姆·罗宾斯在法庭上无法向法官和陪审员解释为何妻子和高尔夫教练身上会有八个弹孔,而不是三八式手枪容量的六颗。于是所有人都按照律师冷血杀手的形容来理解。被害人身上的八个弹孔说明他在打完手枪里的全部子弹后,再次装上子弹对已经死亡的两个被害人进行了射击,这就足以说明他的冷酷无情,因为他能在被害人已经死亡的情况下,再次从容、冷静地装上子弹对尸体进行射击。不管是在中国还是美国,这肯定都是属于杀人罪中的加重情节,只是中国不会像美国那样判处两个无期徒刑,因为美国大部分的州都没有死刑,两个无期徒刑就足以表达人民群众对犯罪分子所犯罪刑的极度愤怒和最大惩戒了。我们也常常能看到某某犯罪分子被判了几百年的监禁,大致都是这个意思。
相比之下,《杀戮时刻》里面杀了人的卡尔能够被无罪开释似乎就是奇迹。不过,拯救他的并不是上帝或者陪审团的仁慈,说到底还是法律--包含着人性的并不冷酷的法律。美国法律有一则叫激情杀人(kill in the heat of passion),是指杀人者出于一时愤怒或情绪失控,在丧失理智的情况下非法剥夺他人生命的犯罪行为。激情杀人与其他类型的故意杀人罪的不同之处在于:它往往具有突发性和不可预测性。比如,一个丈夫回到家,看见与别人通奸在床的妻子后,因为极度愤怒,用猎枪杀死了两个人,这通常就会被认定为激情杀人。因为人类所独有的意志脆弱性(frailty of human nature),当一个人面对自己受到的巨大伤害而愤怒,作出不理智的行为,这在很大程度上是能够得到宽容的。当然认定为激情杀人不是那么简单的,必须要有专家证人出庭作证,向陪审团证明被告人的精神状况,这位证人的证言的可信度就显得极为重要了。
《肖申克的救赎》里的蒂姆·罗宾斯显然倒霉的完全不能搭上激情杀人这一救命稻草:他跟踪了奸夫淫妇很久,他准备了手枪(不是愤怒时顺手抄起的凶器),他"射击"了8颗子弹……一切都在"证明"他是有预谋的,清醒的犯下了杀人罪--好在,最后另一种"激情"拯救了他。
军事法庭(Military Court)
我们知道,在法庭片里面,大家都要尊称法官大人"honor"。但有一类影片,在那里的法庭上,我们听到sir(长官)的次数绝对要比听到honor的次数要多。这就是军事法庭(Military Court)。《好人寥寥》(A Few Good Men)里面嚣张的上校就多次提醒阿汤哥注意他的军衔,令年轻的律师们郁闷非常。由于军事法庭内的法官、陪审员、控辩双方和被告都是现役军人,《极度重罪》里被现抓上阵的普通民事律师阿什莉·贾德也感到很不适应。军事法庭只能审判军人,平民肯定不会在军事法庭上出现。特例可能只有9·11了。在那时的普通美国人如果犯了罪,既有可能在普通法庭接受审判,也有可能在总统要求设立的特别军事法庭被审判。
军事法庭的案件,审判是可以不公开的,证据来源也可以不公开。被告甚至可能被剥夺看到证据并和证人对质的权利。(所以这类影片中律师受到的阻力特别大,《Basic》里的层层迷雾也就来自于此)这对于那些来自情报机构和军事机构的秘密证据就特别有利。军事法庭中陪审员有三分之二同意就可以给被告定罪,并有权判处死刑,而且不准上诉。这些都显然更方便给嫌犯定罪和快速判刑。
有了这些特殊政策,编剧们很容易制造出重重黑幕。而一个军人在这类案件中,到底是该执行命令,以服从为天职,还是遵循人性,置"红色法规"于不顾,就成了军事法庭片的核心所在。
巨额赔偿(Compensation)
三亿三千三百万美元!《永不妥协》(Erin Brockovich)中朱丽娅·罗伯茨为小镇上受污染毒害的居民辩护,最终为他们赢得的巨额赔偿金。《惊爆内幕》(Insider)中的拉塞尔·克劳更是以其证词拿下了几大烟草2460亿美元的赔偿,再创历史新高!这可不是编剧在做梦,写出来让大家意淫的。两部影片都改编自真实的案件。而我们也确实能在现实中看到这样蚂蚁绊倒大象的故事:一位妇女就因为在美国的麦当劳中被溅出的热咖啡烫伤而获得了270万美元的赔偿。
这种纯洁善良的小人物同邪恶狠毒的大势力作斗争,并最终修成正果的故事里有太多导演喜欢的冲突元素,很容易就能成为一部脍炙人口的影片。当结尾字幕出现时,我们总会看到,那位蚂蚁顶住各方面压力,坚持到底,不屈不挠最终啃下了巨大的骨头,成了英雄和富翁。这时,除了对主人公的精神赞叹不已,大洋彼岸的我们最想知道的恐怕就是,那些看似不大的案件怎么会有那么令人惊叹的巨额赔偿?
其实,这些钱属于惩罚性赔偿。惩罚性赔偿金是为了惩罚被告(经常是一些大公司甚至政府部门)的过失行为,并对被告今后的行为产生威慑作用。它的原意不是补偿原告,而是为了惩罚被告,所以往往数额巨大--当然这也不意味着你可以漫天要价。美国高院制定了三个标准:一是行为的可恶程度;二是惩罚性赔偿与原告所遭受的实际伤害之比;三是对类似违法行为所能给予的民事或刑事惩罚的差别。除了以上三条,法庭还要用"总体合理性"来进行衡量和考虑。
当《永不妥协》中的朱丽娅·罗伯茨赢得了官司,把巨额赔偿送到一位受害儿童母亲的手里时,那位母亲一下坐在了地上,失声痛哭。这时你会发现,其实任何赔偿也无法挽回受害者身心上受到的伤害。
米兰达法则(Miranda Warnings)
"你有权保持沉默,如果你放弃这个权利,你说的每句话都可能在法庭上对你不利。你也有权请律师,如果你没钱的话,法庭将为你指派一位。"
当年看《神探亨特》,把这几句话背得滚瓜烂熟。不过不知道亨特为什么每次抓坏人时都这么"唐僧"地来上两句,还以为他是在摆酷呢。后来看到《肖申克的救赎》,典狱长东窗事发后,警察在监狱门口拿着纸也向海利宣读了这几句话。这时候,自己已经知道,原来这就是美国法律上有名的"米兰达法则"(Miranda Warnings)。
一九六三年,一个名叫恩纳斯托·米兰达的二十三岁无业青年因涉嫌强奸和绑架妇女在亚利桑那州被捕,警官随即对他进行了审问。在审讯前,警官没有告诉米兰达有权保持沉默,有权不自认其罪。米兰达文化不高,这辈子也从没听说过世界上还有美国宪法第五修正案(《权力法案》《THE BILL OF RIGHTS》)这么个玩艺儿。经过连续两小时的审讯,米兰达承认了罪行,并在供词上签了字。
后来在法庭上,检察官向陪审团出示了米兰达的供词,作为指控他犯罪的重要证据。米兰达的律师则坚持认为,根据宪法,米兰达供词是无效的。最后,陪审团判决米兰达有罪,法官判米兰达二十年有期徒刑。此案后来上诉到美国最高法院。一九六六年,最高法院以五比四一票之差裁决地方法院的审判无效,理由是警官在审问前,没有预先告诉米兰达应享有的宪法权利。最高法院在裁决中向警方重申了审讯嫌犯的规则:第一,预先告诉嫌犯有权保持沉默。第二,预先告诉嫌犯,他们的供词可能用来起诉和审判他们。第三,告诉嫌犯有权请律师在受审时到场。第四,告诉嫌犯,如果请不起律师,法庭将免费为其指派一位律师。这些规定后来被称为"米兰达法则"(Miranda Warnings)。
"米兰达法则"的前三条与米兰达一案直接有关,而规则的第四条,即如果嫌犯请不起辩护律师,法庭应免费为其指定一位律师的规定,则是根据美国最高法院在一九六三年做出的另一项重要裁决。
米兰达法看似给警方戴上了枷锁,不过美国最高法院大法官霍尔姆斯有句名言:"罪犯逃脱法网与官府的非法行为相比,罪孽要小得多。"
小贴士:双重危险(Double Jeopardy)原则
阿什莉·贾德、汤米·李琼斯主演的《双重危险》,片名直接点到了英美法系中著名的"双重危险"原则。所谓"双重危险"原则,字意上理解有些类似于大陆法系中"一事不再理",既法律规定嫌疑人不会因为同一案件、同一罪名被两次审理和两次定罪。影片里的阿什莉·贾德被控谋杀丈夫而入狱,结果发现丈夫其实是诈死,而是为了和情妇共同生活而故意陷害她。六年后女主角假释出狱前去复仇,根据"双重危险"的原则,既然她已经因谋杀丈夫而入狱服刑,那么现在即使她在众人面前枪杀丈夫,也不会再度受到审判。
我自己随便想想都可以列出一串来,我最喜欢的是《肖申克的救赎》和《因父之名》,同是法律电影,主题大相径庭。其他还有比如《魔鬼代言人》等等。这里有篇法律电影的文章,觉得不错。特地帖一下。
对了,还有Julia Roberts的《永不妥协》,再加上“The Shawshank Redemption”, "In the Name of Father",让我百看不厌。
揭开法律电影的面纱
几乎每个法院的建筑上都有天平的标志。它代表了正义和公正。在法庭上,人性的高尚与丑恶,勇气与恐惧,各种观念的纠葛,无法掩饰,无法作伪地展现出来;而激烈的庭辩中又处处闪烁着智慧的光彩。所以一直很喜欢看法律题材的电影,也就是所谓的法庭片。银幕上,派克曾在这里面色凝重地为黑人伸张正义;科斯特纳曾在这里作出令人喘不过气来的陈述,为自由大声疾呼;马特·达蒙曾在这里为儿童争取权益;汤姆·克鲁斯曾在这里为揭露律师事务所的黑幕绞尽脑汁……
然而,由于国情的不同,由于法庭片涉及了太多的专业知识,它又是那么看起来云里雾里的一种影片。在那些精彩的影像之外,我们脑海中总悬着一个个大大的问号。现在,让我们来揭开法律电影面纱的一角,更深入的窥探一下它的容颜吧。
判例制(Prejudication)
还记得当年香港有一部影片叫《法外情》么?此片红极一时,引出后来《法内情》、《法中情》等一批法庭片。当时,既为被案情的起伏和双方律师的唇枪舌剑所吸引,又为法理中透出的人情所感动。不过,当时很不解的是,那些法官、律师何以要戴着可笑的银色假发?为什么律师要对着那两排普通百姓侃侃而谈?
后来才明白,香港一直是英国的殖民地,法律体系自然也来自英国。英和美国的法律体系被称为海洋法系(也叫英美法系)。那些假发啊陪审团啊都是英美法系的特色。开始时美国跟英国有样学样,在像《帕拉亭案件》这样的好莱坞老片中,假发、律师袍等等一个都不能少。后来美国则变得日益开通散漫,不像英国人那样拘禁保守--法官不用在大热天也戴着假发,律师穿个西服似乎比穿律师袍更有风度嘛。至于采用了大陆法系的欧洲各国(最有代表性的是法、德),还有亚洲的日本、中国大陆(包括台湾),都因为没有这种容易出彩的法律体系而痛失了拍出精彩法庭片的先天条件。
当然,两个法系最大的不同倒还不在法官律师的穿着打扮,而是法的渊源,也就是以什么作为断案依据。英美法系采取的是判例制,拿以前类似的案件作为审判的依据。你常常会看到影片里的美国律师狂查资料,找的就是以前的判例。在《造雨人》里面,马特·达蒙就是找到了一个被人遗忘的相似案例,由此反败为胜的。这在客观上也帮了电影一个忙:在法庭上谈谈以前的案子总显得有意思一些吧,大陆法系的国家只能以立法为判案依据,随你再如何声情并茂,在银幕上背诵法律条文还不让观众都睡死过去?
陪审团(Jury)
为什么影片中的律师总是对着几排陪审员滔滔不绝的说,而不去理会法官?
为什么律师总说他们相信人民,相信陪审员会做出公正的判决,而不是法官?
为什么律师总说这是我挑的陪审团,胜利应该是我的?
太多的为什么让我们看美国的法庭片总不是那么酣畅淋漓。这陪审团到底是怎么回事?难道随便抓几个人让他们决定有罪无罪是种好的法律制度么?
陪审制度可以说是当今美国司法制度中最为重要和独特的一部分,也是海洋法系与大陆法系的重要区别(当年,美国造英国的反,原因之一就是英国当局剥夺美国人应当享有的陪审团审判权利呢!)。在美国法庭审理中取胜的关键是说服陪审团,因为最后做出裁决的是陪审团,而不是高高在上的法官。陪审团裁决被告有罪还是无罪,然后由法官量刑。法官只是一个控制法庭节奏、维持秩序,决定陪审团应该知道什么,什么证据能够呈堂,对证人的提问是否恰当的裁判。由最普通公民组成的陪审团来决定一个嫌犯的命运,这样做符合美国的平等公正精神。所以,能否组成一个对自己有利的陪审团将直接影响案件的结果。
作为一个美国公民,他有可能在一天醒来以后接到个电话,要求他担任陪审员,这是他的义务。法官是从法院管区内通过社会保险号码或者电话号码黄页随机挑出几倍于陪审团所需的人数参加初选的。候选陪审员应当在种族、年龄、性别和其他方面准确反映社会中各阶层的状况。能成为陪审员也非常不容易,与案件有关的人都不行,有职业思维习惯的,例如律师、医生等也不能担任。然后,律师会通过几个简单的问题来进一步选择陪审员。这主要是为了删除那些因为环境和经历而有思维倾向或种族倾向的人,以防止被告受到不公正的裁判。有一定思维定势的人确实不利于最终裁决的公正性,比如在经典老片《十二怒汉》末尾,陪审团其他成员最后都已转变立场,只有3号陪审员死死咬定被控杀人的贫民区男孩有罪,原来他因为自己的儿子离家出走,所以迁怒于所有的不良少年。在《魔鬼代言人》这部被认为是美国辛普森杀妻案翻版的影片中,基努·里夫斯挑选陪审团成员的戏和现实中辛普森杀妻案的选择过程也极为相似:如果陪审员是有过被丈夫殴打或者虐待经历的女性,那么一般就会认为她已有了思维倾向,肯定会被辨方删掉,而控方就会希望她留下。例如,基努·里夫斯在挑选陪审员时认为那个自制衣服的黑人会是一个愤世嫉俗、厌恶权贵的人;那个一本正经的天主教徒从表情上看极为想成为陪审员,让不忠的男人得到惩罚。通过对话,候选陪审员的穿着甚至一些小动作来确定陪审员的思维倾向全靠律师的职业素养和直觉。到最后,一般会选出12名正式和12名候补陪审员,在正式陪审员因为一些特殊原因退出的时候,就需要候补的补上去,这24名陪审员都要经过控辩双方的认可。
在有些时候,如果新闻媒体的报道和社会舆论会妨碍到陪审员们做出正确的判断,会由美国政府出钱把陪审员隔离起来,严禁与外界接触,打电话也是绝对被禁止的(《十二怒汉》中陪审员们所有与外界的交流都是由一个法警完成的),政府用纳税人的钱供他们吃住,还给这些陪审员一天几个美金的补助,直到案件结束,从这儿也不难理解为什么美国案件的审理花费会那么高。雪儿主演的《嫌疑犯》中,整个陪审团都被隔离了,因为法官认为陪审团成员与律师私下接触过,不隔离会影响案件的审理。《造雨人》里也出现过相关的情节:马特·达蒙饰演的小律师做出和某陪审团成员发生接触的假相,引得对方律师在法庭上质疑该名陪审员的品质,结果竟被对方当庭痛揍。影片藉此来表现初出茅庐的新手如何另辟怪招和那些"老江湖"、大律师斗智斗勇。
判定被告有罪,必须是12个陪审员的一致意见。影片《十二怒汉》的基本情节就架构在这一原则之上。影片开始时,12个陪审员中有11个一致通过被告有罪,只有八号陪审员亨利·方达提出异议。在接下来将近二十四个小时的时间里,八号陪审员围绕着凶器弹簧刀是否独一无二,火车呼啸而过的环境下喊叫能否被听清,楼下老头的证词在时间上的矛盾,凶手握刀姿势的差异,以及邻居目击者在视力上的缺陷,提出一连串疑点,最终艰难地说服了众人。只要有一个人不同意,只要有一个人认为检察官的证据还没有达到"超越合理的怀疑"的地步,被告的罪就判不下来。这也是美国刑事案件审判的定罪率很低的原因。
陪审团所做的工作不仅仅是裁定"有罪"或"无罪",更重要是贯彻社会的价值观念。由于陪审团的成员是从社会各个阶层中选出的,因此陪审团作出的裁定就不同于法官个人的决定,陪审团裁定可能通过一个陪审员反映出社会的普遍价值观念,反映出社会上的民意对某一种行为是支持同情还是蔑视遣责。这在移民社会的美国尤其重要。
辨诉交易(Plea Bargaining)
毫无疑问,在大部分的美国影片中,律师都是以唯利是图、狡诈和善于说谎的面貌出现的。太多的法庭片里都有原本尖锐对立的控辨双方开庭前在一起讨价还价的场面,这更使我们对美国式坏律师的印象更为深刻,以为美国的律师和检察官个个都是进行私下交易的龌龊小人。像《好人寥寥》中就出现控方要求辨方用认罪来换取服刑半年后假释出狱的场景。当然这全都是一种误解,它就涉及到了西方法律中独有的辨诉交易(Plea Bargaining),也就是在法官开庭审理之前,处于控诉一方的检察官和代表被告人的辩护律师可以进行协商,以检察官撤销指控、降格指控或要求法官从轻判处刑罚为条件,换取被告人的认罪答辩(plea of Guilty)以达到节约诉讼成本,快速结案的目的。
其实从辩诉交易的效果来看,辩诉交易往往对"职业"犯罪人更为有利,而对偶犯和非"职业"型的犯罪人不太公平。因为"职业"犯罪人有更多筹码与检察官讨价还价,在辩诉交易中更能迫使检察官让步,得到更加宽松的处理。而且从犯罪经验来看,"职业"犯罪人知道如何利用手中的信息和检察官讨价还价,即使律师建议他接受交易,他也能够凭经验继续拖延。偶犯和非"职业"型犯罪人则不同,经历刑事程序经验的缺乏使他们更难以忍受审前的羁押,往往急于接受检察官提出的交易条件,结果对自身权利保护不够。
在电影中律师常被称为"诉棍",其实就是因为律师大都唯恐天下不乱,没有诉讼、二审和再审,他们怎么挣钱?为了进入诉讼程序,很多律师都不倾向达成辨诉交易。影片的导演也不喜欢辨诉交易,不论他的主人公律师是好是坏。想想也是,达成了辨诉交易,案件就结束了,电影还怎么演下去?
证人(Witness)
激烈的法庭辩论中,最能体现律师水平的就是律师和证人之间的唇枪舌剑了,但是我们却常听到一些与案件无关的问题,例如你年轻的时候作过什么,说过什么等一些私人问题。接着,你最熟悉的另一个法庭场景就出现了,对方律师站起来大声咆哮着"objection!"向法官表示抗议,接着说"这与本案无关"。有个笑话是说美国律师如果在法庭上走神了,那么他回过神的第一句话肯定是objection,然后就是那句著名的"这与本案无关"。在美国的法庭上被告可以是很悠闲的--他有权保持沉默。苦的是证人,交叉询问制度让他受尽控辩双方刁钻的诘难。律师都要在审理之前教自己的委托人如何回答问题,如何技巧地避而不答。这里面的学问可大了。
律师:"你是否在家里开过有同学参加的派队?"
证人:"是的。"
律师:"在派对上你们是不是做过跟性有关的叫做性幻想的游戏?"
证人:"事情不是这样的。"
律师:"请你回答是还是不是。"
证人:"是,但是只有一次。"
这是《魔鬼代言人》中出现的一段法庭问话,证人是个14岁的女孩。但正是上面这段对话让女孩败诉了,因为它足以表明女孩品行不端,在性方面很放纵。这样,这个老师猥亵女学生的案件当然就不成立了。
律师:"请问你年轻的时候是不是曾经被捕入狱?"
精神病专家:"是的。"
律师:"你能告诉我们你那时是为什么被捕入狱吗?"
精神病专家:"……"
律师:"请你大声的告诉我们是为什么?"
精神病专家:"骚扰女性。"
不说别的,看了上面一段对话,你能相信这个精神病专家的品格和他提供的证词吗?但是如果我告诉你这个被骚扰的女性后来成了这个精神病专家的妻子,你是否又会改变对这个专家的看法并相信他的证言呢?在《杀戮时刻》中,律师马修·麦康瑙希正是用这个专家的证词使陪审团相信了被告塞缪尔·杰克逊的激情杀人。
我们可以这样理解证人的品行在案件审理中的重要性。假如你在一碗面里发现了一条虫子,肯定不会再去品尝这碗面好不好吃,而是把它全部倒掉。当一个人的道德品质都值得怀疑的时候,谁还会相信他的证言?这种侧面进攻的方式是大部分律师最喜欢使用的方式,常常能够达到事半功倍的效果。
当然,证人也有巧妙回答问题的方法。
检察官:"你是否在3月15日那天晚上看到坐在被告席上的那位女性杀了人?"
证人:"我没有在3月15日那天晚上看见那位女性杀人。"
可能看了上面一段话你没有什么感觉,但这却是"隐含确认之否认"(Negative Pregnant),在有法律素养的人来看,这一回答中隐含了他可能在另外的一个晚上看到了杀人情节。当然,检察官的问法很没有水平,证人也可以在不作伪证的情况下逃避做出诚实的回答。
大部分法庭片的庭审场面都不会很长,对话却是字字珠玑,蕴含了编剧的巨大智慧。
歧视(Discrimination)
格里高利·派克在《杀死一只知更鸟》(《To Kill A Mockingbird》)中扮演的为黑人伸张正义的芬奇律师被认为是美国历史最伟大的银幕英雄之一。这种关于种族歧视的影片在美国比比皆是,以至于我们一说起歧视就想起黑人、白人、拉美人、亚裔人在美国那些拎勿清的事体。其实在美国很多我们习以为常的事情都可以控告歧视:性别、年龄、高矮、胖瘦等等,不一而足。例如,如果哪家公司招聘中说只招收35岁以下男性,那么这家公司就等着吃官司吧!因为这是对女性和年龄偏大人士的歧视。曾经也有美国的肥胖人士控告美国的电影院说椅子过于狭小,是对他们的歧视。这其中当然也有对于同性恋以及艾滋病患者的歧视。《费城》中律师事务所解雇了患有艾滋病的汤姆·汉克斯,这是不是能说明汉克斯因为他的一些私人(privacy)情况而受到了歧视(不公正待遇)?像生活中一样,歧视有时是很难界定的,因为你无法把被告的思想、态度呈现在陪审团面前,只有通过已经发生的事实以及这些事实间的关系来证明。
能让陪审团得出安迪受到歧视的原因:1、在事务所得知汤姆·汉克斯身患艾滋病之前,即将提升他为事务所的合伙人之一,也就是进入老板阶层。2、汉克斯在事务所工作表现良好,负责所内最为重要、涉案金额巨大的案件。而结果是:有以上表现的他却被解雇了,中间的转折点就是他们发现他身患艾滋病,同时他又是同性恋。最为有力的证据证言就是事务所合伙人以往对于同性恋的嘲讽和鄙夷,这就给了辩方很大的帮助。
被歧视的人通常都是社会的弱势群体,通过法律诉讼,他们找到做人的尊严和平等。这类影片也往往能唤起人们对被歧视人群的巨大同情甚至强烈的社会责任感,尽管电影采取的是很讨巧的手法。
激情杀人(Kill in the Heat of Passion)
为什么《杀戮时刻》里的塞缪尔·杰克逊枪杀了两个人,还重伤了一个无辜的警察,可却被当庭释放?为什么《肖申克的救赎》里的蒂姆·罗宾斯明明没有杀人,却在律师上下两片嘴的一开一合之间就被判了两个无期徒刑?同样是杀人案,一个是替女儿报仇,一个是因妻子红杏出墙而报复(我们权且当蒂姆·罗宾斯在影片里杀了人),怎么会有这样大的不同?
无辜的蒂姆·罗宾斯在法庭上无法向法官和陪审员解释为何妻子和高尔夫教练身上会有八个弹孔,而不是三八式手枪容量的六颗。于是所有人都按照律师冷血杀手的形容来理解。被害人身上的八个弹孔说明他在打完手枪里的全部子弹后,再次装上子弹对已经死亡的两个被害人进行了射击,这就足以说明他的冷酷无情,因为他能在被害人已经死亡的情况下,再次从容、冷静地装上子弹对尸体进行射击。不管是在中国还是美国,这肯定都是属于杀人罪中的加重情节,只是中国不会像美国那样判处两个无期徒刑,因为美国大部分的州都没有死刑,两个无期徒刑就足以表达人民群众对犯罪分子所犯罪刑的极度愤怒和最大惩戒了。我们也常常能看到某某犯罪分子被判了几百年的监禁,大致都是这个意思。
相比之下,《杀戮时刻》里面杀了人的卡尔能够被无罪开释似乎就是奇迹。不过,拯救他的并不是上帝或者陪审团的仁慈,说到底还是法律--包含着人性的并不冷酷的法律。美国法律有一则叫激情杀人(kill in the heat of passion),是指杀人者出于一时愤怒或情绪失控,在丧失理智的情况下非法剥夺他人生命的犯罪行为。激情杀人与其他类型的故意杀人罪的不同之处在于:它往往具有突发性和不可预测性。比如,一个丈夫回到家,看见与别人通奸在床的妻子后,因为极度愤怒,用猎枪杀死了两个人,这通常就会被认定为激情杀人。因为人类所独有的意志脆弱性(frailty of human nature),当一个人面对自己受到的巨大伤害而愤怒,作出不理智的行为,这在很大程度上是能够得到宽容的。当然认定为激情杀人不是那么简单的,必须要有专家证人出庭作证,向陪审团证明被告人的精神状况,这位证人的证言的可信度就显得极为重要了。
《肖申克的救赎》里的蒂姆·罗宾斯显然倒霉的完全不能搭上激情杀人这一救命稻草:他跟踪了奸夫淫妇很久,他准备了手枪(不是愤怒时顺手抄起的凶器),他"射击"了8颗子弹……一切都在"证明"他是有预谋的,清醒的犯下了杀人罪--好在,最后另一种"激情"拯救了他。
军事法庭(Military Court)
我们知道,在法庭片里面,大家都要尊称法官大人"honor"。但有一类影片,在那里的法庭上,我们听到sir(长官)的次数绝对要比听到honor的次数要多。这就是军事法庭(Military Court)。《好人寥寥》(A Few Good Men)里面嚣张的上校就多次提醒阿汤哥注意他的军衔,令年轻的律师们郁闷非常。由于军事法庭内的法官、陪审员、控辩双方和被告都是现役军人,《极度重罪》里被现抓上阵的普通民事律师阿什莉·贾德也感到很不适应。军事法庭只能审判军人,平民肯定不会在军事法庭上出现。特例可能只有9·11了。在那时的普通美国人如果犯了罪,既有可能在普通法庭接受审判,也有可能在总统要求设立的特别军事法庭被审判。
军事法庭的案件,审判是可以不公开的,证据来源也可以不公开。被告甚至可能被剥夺看到证据并和证人对质的权利。(所以这类影片中律师受到的阻力特别大,《Basic》里的层层迷雾也就来自于此)这对于那些来自情报机构和军事机构的秘密证据就特别有利。军事法庭中陪审员有三分之二同意就可以给被告定罪,并有权判处死刑,而且不准上诉。这些都显然更方便给嫌犯定罪和快速判刑。
有了这些特殊政策,编剧们很容易制造出重重黑幕。而一个军人在这类案件中,到底是该执行命令,以服从为天职,还是遵循人性,置"红色法规"于不顾,就成了军事法庭片的核心所在。
巨额赔偿(Compensation)
三亿三千三百万美元!《永不妥协》(Erin Brockovich)中朱丽娅·罗伯茨为小镇上受污染毒害的居民辩护,最终为他们赢得的巨额赔偿金。《惊爆内幕》(Insider)中的拉塞尔·克劳更是以其证词拿下了几大烟草2460亿美元的赔偿,再创历史新高!这可不是编剧在做梦,写出来让大家意淫的。两部影片都改编自真实的案件。而我们也确实能在现实中看到这样蚂蚁绊倒大象的故事:一位妇女就因为在美国的麦当劳中被溅出的热咖啡烫伤而获得了270万美元的赔偿。
这种纯洁善良的小人物同邪恶狠毒的大势力作斗争,并最终修成正果的故事里有太多导演喜欢的冲突元素,很容易就能成为一部脍炙人口的影片。当结尾字幕出现时,我们总会看到,那位蚂蚁顶住各方面压力,坚持到底,不屈不挠最终啃下了巨大的骨头,成了英雄和富翁。这时,除了对主人公的精神赞叹不已,大洋彼岸的我们最想知道的恐怕就是,那些看似不大的案件怎么会有那么令人惊叹的巨额赔偿?
其实,这些钱属于惩罚性赔偿。惩罚性赔偿金是为了惩罚被告(经常是一些大公司甚至政府部门)的过失行为,并对被告今后的行为产生威慑作用。它的原意不是补偿原告,而是为了惩罚被告,所以往往数额巨大--当然这也不意味着你可以漫天要价。美国高院制定了三个标准:一是行为的可恶程度;二是惩罚性赔偿与原告所遭受的实际伤害之比;三是对类似违法行为所能给予的民事或刑事惩罚的差别。除了以上三条,法庭还要用"总体合理性"来进行衡量和考虑。
当《永不妥协》中的朱丽娅·罗伯茨赢得了官司,把巨额赔偿送到一位受害儿童母亲的手里时,那位母亲一下坐在了地上,失声痛哭。这时你会发现,其实任何赔偿也无法挽回受害者身心上受到的伤害。
米兰达法则(Miranda Warnings)
"你有权保持沉默,如果你放弃这个权利,你说的每句话都可能在法庭上对你不利。你也有权请律师,如果你没钱的话,法庭将为你指派一位。"
当年看《神探亨特》,把这几句话背得滚瓜烂熟。不过不知道亨特为什么每次抓坏人时都这么"唐僧"地来上两句,还以为他是在摆酷呢。后来看到《肖申克的救赎》,典狱长东窗事发后,警察在监狱门口拿着纸也向海利宣读了这几句话。这时候,自己已经知道,原来这就是美国法律上有名的"米兰达法则"(Miranda Warnings)。
一九六三年,一个名叫恩纳斯托·米兰达的二十三岁无业青年因涉嫌强奸和绑架妇女在亚利桑那州被捕,警官随即对他进行了审问。在审讯前,警官没有告诉米兰达有权保持沉默,有权不自认其罪。米兰达文化不高,这辈子也从没听说过世界上还有美国宪法第五修正案(《权力法案》《THE BILL OF RIGHTS》)这么个玩艺儿。经过连续两小时的审讯,米兰达承认了罪行,并在供词上签了字。
后来在法庭上,检察官向陪审团出示了米兰达的供词,作为指控他犯罪的重要证据。米兰达的律师则坚持认为,根据宪法,米兰达供词是无效的。最后,陪审团判决米兰达有罪,法官判米兰达二十年有期徒刑。此案后来上诉到美国最高法院。一九六六年,最高法院以五比四一票之差裁决地方法院的审判无效,理由是警官在审问前,没有预先告诉米兰达应享有的宪法权利。最高法院在裁决中向警方重申了审讯嫌犯的规则:第一,预先告诉嫌犯有权保持沉默。第二,预先告诉嫌犯,他们的供词可能用来起诉和审判他们。第三,告诉嫌犯有权请律师在受审时到场。第四,告诉嫌犯,如果请不起律师,法庭将免费为其指派一位律师。这些规定后来被称为"米兰达法则"(Miranda Warnings)。
"米兰达法则"的前三条与米兰达一案直接有关,而规则的第四条,即如果嫌犯请不起辩护律师,法庭应免费为其指定一位律师的规定,则是根据美国最高法院在一九六三年做出的另一项重要裁决。
米兰达法看似给警方戴上了枷锁,不过美国最高法院大法官霍尔姆斯有句名言:"罪犯逃脱法网与官府的非法行为相比,罪孽要小得多。"
小贴士:双重危险(Double Jeopardy)原则
阿什莉·贾德、汤米·李琼斯主演的《双重危险》,片名直接点到了英美法系中著名的"双重危险"原则。所谓"双重危险"原则,字意上理解有些类似于大陆法系中"一事不再理",既法律规定嫌疑人不会因为同一案件、同一罪名被两次审理和两次定罪。影片里的阿什莉·贾德被控谋杀丈夫而入狱,结果发现丈夫其实是诈死,而是为了和情妇共同生活而故意陷害她。六年后女主角假释出狱前去复仇,根据"双重危险"的原则,既然她已经因谋杀丈夫而入狱服刑,那么现在即使她在众人面前枪杀丈夫,也不会再度受到审判。
2006年10月6日星期五
我的兔儿爷,阿福,还有……,还有中秋节
相传有一年北京流行瘟疫,玉兔从月宫下凡来治病,却因一身雪白,谁都不让她进门,她只好去庙里借神像的盔甲打扮成男子去挨家挨户治病,走遍了经常内外。最后,人们看到兔儿爷消除了北京的瘟疫,才恍然大悟。由是感激,在每年中秋以兔儿爷来祭祀。
兔儿爷的起源大约在明末,在明人纪坤的《花王阁剩稿》中有着如下记载:“京中秋节多以泥抟兔形,衣冠踞坐如人状,儿女祀而拜之。”到了清代,兔儿爷的功能已经由祭月转变为儿童的中秋节玩具。
唐鲁孙先生回忆北平旧事的文章中也曾经提及,他小时候攒兔儿爷,大大小小成箱论柜。
http://travel.tom.com/2277/2280/2005825-46780.html
the following statues are from Korea, I do not know who they are.
this is "a fu" from wu xi,
we call 惠山泥人
兔儿爷的起源大约在明末,在明人纪坤的《花王阁剩稿》中有着如下记载:“京中秋节多以泥抟兔形,衣冠踞坐如人状,儿女祀而拜之。”到了清代,兔儿爷的功能已经由祭月转变为儿童的中秋节玩具。
唐鲁孙先生回忆北平旧事的文章中也曾经提及,他小时候攒兔儿爷,大大小小成箱论柜。
http://travel.tom.com/2277/2280/2005825-46780.html
the following statues are from Korea, I do not know who they are.
this is "a fu" from wu xi,
we call 惠山泥人
2006年10月4日星期三
Free hugs——这个世界需要温情,需要free hugs
http://www.youtube.com/watch?v=vr3x_RRJdd4&eurl=
Sometimes, a hug is all what we need. Free hugs is a real life controversial story of Juan Mann, A man whos sole mission was to reach out and hug a stranger to brighten up their lives.
In this age of social disconnectivity and lack of human contact, the effects of the Free Hugs campaign became phenomenal.
As this symbol of human hope spread accross the city, police and officials ordered the Free Hugs campaign BANNED. What we then witness is the true spirit of humanity come together in what can only be described as awe inspiring.
In the Spirit of the free hugs campaign, PASS THIS TO A FRIEND and HUG A STRANGER! After all, If you can reach just one person…
在澳州悉尼闹区街头提供陌生人“免费拥抱”而引人瞩目的男子璜·曼恩,近日来在网络上爆红之后也首度开金口,阐述他这种行为的内涵。
据《中国时报》报道,曼恩形容说,他在悉尼毕特街购物中心周遭人来人往人行道上供人拥抱,目的是在传达一种“快餐式情感”。曼恩说,这是让大家笑容绽开的一种方式,“因为只要有一个人跟我拥抱,就会带动从旁经过的五个路人脸上的微笑。”
通常,曼恩在街头揽客时还会高举一张写着“FREE HUGS ”(免费拥抱)的牌子,向路人表明自己用意。璜。曼恩英文名是Juan Mann(发音是One Man),这是他把玩文字,自许为“独行侠”而想出来的假名,因为他虽在街头任意跟人拥抱,却也一直坚持几个原则:不透露真实名字、不给电话号码、也不藉此跟人约会或发生任何关系。
曼恩张贴在影像分享网站上一卷他跟路人拥抱的录像,这四天来已有七十万人次上去浏览,而网友的留言也多达六千条。
2006年10月2日星期一
Funeral Blues -- W.H. Auden
Funeral Blues
Stop all the clocks, cut off the telephone,
Prevent the dog from barking with a juicy bone,
Silence the pianos and with muffled drum
Bring out the coffin, let the mourners come.
Let aeroplanes circle moaning overhead
Scribbling on the sky the message He is Dead.
Put crepe bows round the white necks of the public doves,
Let the traffic policemen wear black cotton gloves.
He was my North, my South, my East and West,
My working week and my Sunday rest,
My noon, my midnight, my talk, my song;
I thought that love would last forever: I was wrong.
The stars are not wanted now; put out every one,
Pack up the moon and dismantle the sun,
Pour away the ocean and sweep up the woods;
For nothing now can ever come to any good.
-- W.H. Auden
奥登——《 葬礼蓝调》
停止所有的时钟,切断电话
给狗一块浓汁的骨头,让他别叫
黯哑了钢琴,随着低沉的鼓
抬出灵怄,让哀悼者前来。
让直升机在头顶悲旋
在天空狂草着信息他已逝去,
把黑纱系在信鸽的白颈,
让交通员戴上黑色的手套。
他曾经是我的东,我的西,我的南,我的北,
我的工作天,我的休息日,
我的正午,我的夜半,
我的话语,我的歌吟,
我以为爱可以不朽:我错了。
不再需要星星,把每一颗都摘掉,
把月亮包起,拆除太阳,
倾泻大海,扫除森林;
因为什么也不会,再有意味。
Stop all the clocks, cut off the telephone,
Prevent the dog from barking with a juicy bone,
Silence the pianos and with muffled drum
Bring out the coffin, let the mourners come.
Let aeroplanes circle moaning overhead
Scribbling on the sky the message He is Dead.
Put crepe bows round the white necks of the public doves,
Let the traffic policemen wear black cotton gloves.
He was my North, my South, my East and West,
My working week and my Sunday rest,
My noon, my midnight, my talk, my song;
I thought that love would last forever: I was wrong.
The stars are not wanted now; put out every one,
Pack up the moon and dismantle the sun,
Pour away the ocean and sweep up the woods;
For nothing now can ever come to any good.
-- W.H. Auden
奥登——《 葬礼蓝调》
停止所有的时钟,切断电话
给狗一块浓汁的骨头,让他别叫
黯哑了钢琴,随着低沉的鼓
抬出灵怄,让哀悼者前来。
让直升机在头顶悲旋
在天空狂草着信息他已逝去,
把黑纱系在信鸽的白颈,
让交通员戴上黑色的手套。
他曾经是我的东,我的西,我的南,我的北,
我的工作天,我的休息日,
我的正午,我的夜半,
我的话语,我的歌吟,
我以为爱可以不朽:我错了。
不再需要星星,把每一颗都摘掉,
把月亮包起,拆除太阳,
倾泻大海,扫除森林;
因为什么也不会,再有意味。
食客之一:王世襄先生(还有王敦煌先生)——现在的绝望
王世襄先生:
…………
现在的确挺绝望的。什么都变了。也不知道是年纪大了,口味就不行了。(王敦煌插话说,最大的失望是不能自己骑车出去买菜了。)
每一个菜都有习惯做法,爆羊肉就是葱跟羊肉,当然有姜之类的作料,但整个一定是有规定的。北京菜的口味,一般比南方菜偏咸,但每个菜有每个菜的味。反正我觉得现在的菜不是味了。最近我吃芹菜,一点味都没有,跟吃草一样。原料不如从前,这好像是世界性的问题,还不只是中国的问题。
以前我们下乡,在咸宁干校。刚去时候不让我进厨房,怕我下毒,后来第三年把我解放了,我在那儿成头把刀了。刚到咸宁很苦,天天吃南瓜,咸菜是北京带去的,都长红霉了。后来就逍遥了,干校人都调回去了,就没人管了,油和糖都整缸的。整个就是逍遥时代,一个连就剩十来个人,猪还剩十几头,油攒了一大缸。宰完一头猪,头两天熘肝尖啊,炒腰花啊,什么糖醋里脊,都我做;然后第二步就是吃红烧肉,最后一步就是吃馅,吃饺子了。
晚上还跟着当地人出去打鱼去,前阵子他们一家子还从湖北来看过我,现在湖都荒废了,都买大挖土车,给人挖坑,放水养鱼。职业整个都变了。
1972、1973年时候,干校走一个人像来一个宴会似的。大家吃得很凶。我当年做过的一个菜,现在任何饭馆也做不出来。也是我做过的一次最得意的香糟菜,就是“糟溜鳜鱼白加蒲菜”。我刚到干校时候,鲜鳜鱼和野生鳜鱼,四毛钱一斤,等到我走的时候就涨到快一块了。我到湖边去买14条鳜鱼,全要公的,一条母的也不要。母的肚子大,可以区分公母的。14条鱼白,也就是公鱼的生殖器官,非常嫩,跟豆腐一样。蒲菜就是湖里头拿的,喂牛的,叫茭白草,挖一大捆,剥出嫩心就成为蒲菜,每根两寸来长,比济南大明湖产的毫不逊色。香糟酒是我从北京带去的。三者合一,做成后鱼白柔软鲜美,腴而不腻,蒲菜脆嫩清香,加上香糟,奇妙无比。当时吃的人都大叫好吃。现在一个饭馆哪里找出14条活鳜鱼来做一个菜?不可能啊。然后这一桌都是鳜鱼,炒鳜鱼片啊,炸鳜鱼排啊,糖醋鳜鱼啊,还有干烧鳜鱼、清蒸鳜鱼和清汤鱼丸。那天就吃14条鳜鱼。我们叫它“鳜鱼宴”。
那日子是很逍遥,可是岁月蹉跎啊,所以我就是写写诗,真是把时光都耽误了。
从干校回来后还买,后来朝阳市场就关了,变成超市。现在去东四,朝阳市场味都变了。老不做,手也会生疏。所以我现在不买不做也不谈,谈也没有意思了。出去吃没有一次满意的。有的地方觉得一两个菜还可以,吃一两回也就觉得腻了。
…………
吃饭时候,我和老舍先生谈起龙须菜。我说龙须菜是北方名称,南方叫芦笋。当年天坛杂草丛生,却以产益母草和龙须菜著名。其实不只是天坛才有,在四郊有松柏树的坟圈子内都能采到。老舍先生有点惊讶,问我的知识是从哪里得到的。我说这是因为当年我喜欢八旗子弟的老玩意儿,用狗到坟圈子去咬獾的缘故。咬獾在夜里,但白天必须把獾窝和周围的地形都看好才行,要一连去几天才能把獾的行踪摸清,所以就找到了龙须菜。这一下子老舍先生可来了劲儿了,一顿饭时间和我聊的都是关于养狗捉獾的事。■■
from http://www.lifeweek.com
http://www.chinaculture.org/gb/cn_zgwh/2006-05/23/content_82116_2.htm
http://www.chinaculture.org/gb/cn_zgwh/2006-05/23/content_82116.htm
Dear all
wish u a happy national day and a pleasant mid-fall day
@yu huan
it is an island @south east Zhejiang
@yu huan
it is an island @south east Zhejiang
2006年9月29日星期五
纽约客上的一篇长文(关于庞加莱猜想,还有数学家的争斗)
http://www.newyorker.com/printables/fact/060828fa_fact2
MANIFOLD DESTINY
by SYLVIA NASAR AND DAVID GRUBER
A legendary problem and the battle over who solved it.
Issue of 2006-08-28Posted 2006-08-21
On the evening of June 20th, several hundred physicists, including a Nobel laureate, assembled in an auditorium at the Friendship Hotel in Beijing for a lecture by the Chinese mathematician Shing-Tung Yau. In the late nineteen-seventies, when Yau was in his twenties, he had made a series of breakthroughs that helped launch the string-theory revolution in physics and earned him, in addition to a Fields Medal—the most coveted award in mathematics—a reputation in both disciplines as a thinker of unrivalled technical power.
Yau had since become a professor of mathematics at Harvard and the director of mathematics institutes in Beijing and Hong Kong, dividing his time between the United States and China. His lecture at the Friendship Hotel was part of an international conference on string theory, which he had organized with the support of the Chinese government, in part to promote the country’s recent advances in theoretical physics. (More than six thousand students attended the keynote address, which was delivered by Yau’s close friend Stephen Hawking, in the Great Hall of the People.) The subject of Yau’s talk was something that few in his audience knew much about: the Poincaré conjecture, a century-old conundrum about the characteristics of three-dimensional spheres, which, because it has important implications for mathematics and cosmology and because it has eluded all attempts at solution, is regarded by mathematicians as a holy grail.
Yau, a stocky man of fifty-seven, stood at a lectern in shirtsleeves and black-rimmed glasses and, with his hands in his pockets, described how two of his students, Xi-Ping Zhu and Huai-Dong Cao, had completed a proof of the Poincaré conjecture a few weeks earlier. “I’m very positive about Zhu and Cao’s work,” Yau said. “Chinese mathematicians should have every reason to be proud of such a big success in completely solving the puzzle.” He said that Zhu and Cao were indebted to his longtime American collaborator Richard Hamilton, who deserved most of the credit for solving the Poincaré. He also mentioned Grigory Perelman, a Russian mathematician who, he acknowledged, had made an important contribution. Nevertheless, Yau said, “in Perelman’s work, spectacular as it is, many key ideas of the proofs are sketched or outlined, and complete details are often missing.” He added, “We would like to get Perelman to make comments. But Perelman resides in St. Petersburg and refuses to communicate with other people.”
For ninety minutes, Yau discussed some of the technical details of his students’ proof. When he was finished, no one asked any questions. That night, however, a Brazilian physicist posted a report of the lecture on his blog. “Looks like China soon will take the lead also in mathematics,” he wrote.
Grigory Perelman is indeed reclusive. He left his job as a researcher at the Steklov Institute of Mathematics, in St. Petersburg, last December; he has few friends; and he lives with his mother in an apartment on the outskirts of the city. Although he had never granted an interview before, he was cordial and frank when we visited him, in late June, shortly after Yau’s conference in Beijing, taking us on a long walking tour of the city. “I’m looking for some friends, and they don’t have to be mathematicians,” he said. The week before the conference, Perelman had spent hours discussing the Poincaré conjecture with Sir John M. Ball, the fifty-eight-year-old president of the International Mathematical Union, the discipline’s influential professional association. The meeting, which took place at a conference center in a stately mansion overlooking the Neva River, was highly unusual. At the end of May, a committee of nine prominent mathematicians had voted to award Perelman a Fields Medal for his work on the Poincaré, and Ball had gone to St. Petersburg to persuade him to accept the prize in a public ceremony at the I.M.U.’s quadrennial congress, in Madrid, on August 22nd.
The Fields Medal, like the Nobel Prize, grew, in part, out of a desire to elevate science above national animosities. German mathematicians were excluded from the first I.M.U. congress, in 1924, and, though the ban was lifted before the next one, the trauma it caused led, in 1936, to the establishment of the Fields, a prize intended to be “as purely international and impersonal as possible.”
However, the Fields Medal, which is awarded every four years, to between two and four mathematicians, is supposed not only to reward past achievements but also to stimulate future research; for this reason, it is given only to mathematicians aged forty and younger. In recent decades, as the number of professional mathematicians has grown, the Fields Medal has become increasingly prestigious. Only forty-four medals have been awarded in nearly seventy years—including three for work closely related to the Poincaré conjecture—and no mathematician has ever refused the prize. Nevertheless, Perelman told Ball that he had no intention of accepting it. “I refuse,” he said simply.
Over a period of eight months, beginning in November, 2002, Perelman posted a proof of the Poincaré on the Internet in three installments. Like a sonnet or an aria, a mathematical proof has a distinct form and set of conventions. It begins with axioms, or accepted truths, and employs a series of logical statements to arrive at a conclusion. If the logic is deemed to be watertight, then the result is a theorem. Unlike proof in law or science, which is based on evidence and therefore subject to qualification and revision, a proof of a theorem is definitive. Judgments about the accuracy of a proof are mediated by peer-reviewed journals; to insure fairness, reviewers are supposed to be carefully chosen by journal editors, and the identity of a scholar whose pa-per is under consideration is kept secret. Publication implies that a proof is complete, correct, and original.
By these standards, Perelman’s proof was unorthodox. It was astonishingly brief for such an ambitious piece of work; logic sequences that could have been elaborated over many pages were often severely compressed. Moreover, the proof made no direct mention of the Poincaré and included many elegant results that were irrelevant to the central argument. But, four years later, at least two teams of experts had vetted the proof and had found no significant gaps or errors in it. A consensus was emerging in the math community: Perelman had solved the Poincaré. Even so, the proof’s complexity—and Perelman’s use of shorthand in making some of his most important claims—made it vulnerable to challenge. Few mathematicians had the expertise necessary to evaluate and defend it.
After giving a series of lectures on the proof in the United States in 2003, Perelman returned to St. Petersburg. Since then, although he had continued to answer queries about it by e-mail, he had had minimal contact with colleagues and, for reasons no one understood, had not tried to publish it. Still, there was little doubt that Perelman, who turned forty on June 13th, deserved a Fields Medal. As Ball planned the I.M.U.’s 2006 congress, he began to conceive of it as a historic event. More than three thousand mathematicians would be attending, and King Juan Carlos of Spain had agreed to preside over the awards ceremony. The I.M.U.’s newsletter predicted that the congress would be remembered as “the occasion when this conjecture became a theorem.” Ball, determined to make sure that Perelman would be there, decided to go to St. Petersburg.
Ball wanted to keep his visit a secret—the names of Fields Medal recipients are announced officially at the awards ceremony—and the conference center where he met with Perelman was deserted. For ten hours over two days, he tried to persuade Perelman to agree to accept the prize. Perelman, a slender, balding man with a curly beard, bushy eyebrows, and blue-green eyes, listened politely. He had not spoken English for three years, but he fluently parried Ball’s entreaties, at one point taking Ball on a long walk—one of Perelman’s favorite activities. As he summed up the conversation two weeks later: “He proposed to me three alternatives: accept and come; accept and don’t come, and we will send you the medal later; third, I don’t accept the prize. From the very beginning, I told him I have chosen the third one.” The Fields Medal held no interest for him, Perelman explained. “It was completely irrelevant for me,” he said. “Everybody understood that if the proof is correct then no other recognition is needed.”
Proofs of the Poincaré have been announced nearly every year since the conjecture was formulated, by Henri Poincaré, more than a hundred years ago. Poincaré was a cousin of Raymond Poincaré, the President of France during the First World War, and one of the most creative mathematicians of the nineteenth century. Slight, myopic, and notoriously absent-minded, he conceived his famous problem in 1904, eight years before he died, and tucked it as an offhand question into the end of a sixty-five-page paper.
Poincaré didn’t make much progress on proving the conjecture. “Cette question nous entraînerait trop loin” (“This question would take us too far”), he wrote. He was a founder of topology, also known as “rubber-sheet geometry,” for its focus on the intrinsic properties of spaces. From a topologist’s perspective, there is no difference between a bagel and a coffee cup with a handle. Each has a single hole and can be manipulated to resemble the other without being torn or cut. Poincaré used the term “manifold” to describe such an abstract topological space. The simplest possible two-dimensional manifold is the surface of a soccer ball, which, to a topologist, is a sphere—even when it is stomped on, stretched, or crumpled. The proof that an object is a so-called two-sphere, since it can take on any number of shapes, is that it is “simply connected,” meaning that no holes puncture it. Unlike a soccer ball, a bagel is not a true sphere. If you tie a slipknot around a soccer ball, you can easily pull the slipknot closed by sliding it along the surface of the ball. But if you tie a slipknot around a bagel through the hole in its middle you cannot pull the slipknot closed without tearing the bagel.
Two-dimensional manifolds were well understood by the mid-nineteenth century. But it remained unclear whether what was true for two dimensions was also true for three. Poincaré proposed that all closed, simply connected, three-dimensional manifolds—those which lack holes and are of finite extent—were spheres. The conjecture was potentially important for scientists studying the largest known three-dimensional manifold: the universe. Proving it mathematically, however, was far from easy. Most attempts were merely embarrassing, but some led to important mathematical discoveries, including proofs of Dehn’s Lemma, the Sphere Theorem, and the Loop Theorem, which are now fundamental concepts in topology.
By the nineteen-sixties, topology had become one of the most productive areas of mathematics, and young topologists were launching regular attacks on the Poincaré. To the astonishment of most mathematicians, it turned out that manifolds of the fourth, fifth, and higher dimensions were more tractable than those of the third dimension. By 1982, Poincaré’s conjecture had been proved in all dimensions except the third. In 2000, the Clay Mathematics Institute, a private foundation that promotes mathematical research, named the Poincaré one of the seven most important outstanding problems in mathematics and offered a million dollars to anyone who could prove it.
“My whole life as a mathematician has been dominated by the Poincaré conjecture,” John Morgan, the head of the mathematics department at Columbia University, said. “I never thought I’d see a solution. I thought nobody could touch it.”
Grigory Perelman did not plan to become a mathematician. “There was never a decision point,” he said when we met. We were outside the apartment building where he lives, in Kupchino, a neighborhood of drab high-rises. Perelman’s father, who was an electrical engineer, encouraged his interest in math. “He gave me logical and other math problems to think about,” Perelman said. “He got a lot of books for me to read. He taught me how to play chess. He was proud of me.” Among the books his father gave him was a copy of “Physics for Entertainment,” which had been a best-seller in the Soviet Union in the nineteen-thirties. In the foreword, the book’s author describes the contents as “conundrums, brain-teasers, entertaining anecdotes, and unexpected comparisons,” adding, “I have quoted extensively from Jules Verne, H. G. Wells, Mark Twain and other writers, because, besides providing entertainment, the fantastic experiments these writers describe may well serve as instructive illustrations at physics classes.” The book’s topics included how to jump from a moving car, and why, “according to the law of buoyancy, we would never drown in the Dead Sea.”
The notion that Russian society considered worthwhile what Perelman did for pleasure came as a surprise. By the time he was fourteen, he was the star performer of a local math club. In 1982, the year that Shing-Tung Yau won a Fields Medal, Perelman earned a perfect score and the gold medal at the International Mathematical Olympiad, in Budapest. He was friendly with his teammates but not close—“I had no close friends,” he said. He was one of two or three Jews in his grade, and he had a passion for opera, which also set him apart from his peers. His mother, a math teacher at a technical college, played the violin and began taking him to the opera when he was six. By the time Perelman was fifteen, he was spending his pocket money on records. He was thrilled to own a recording of a famous 1946 performance of “La Traviata,” featuring Licia Albanese as Violetta. “Her voice was very good,” he said.
At Leningrad University, which Perelman entered in 1982, at the age of sixteen, he took advanced classes in geometry and solved a problem posed by Yuri Burago, a mathematician at the Steklov Institute, who later became his Ph.D. adviser. “There are a lot of students of high ability who speak before thinking,” Burago said. “Grisha was different. He thought deeply. His answers were always correct. He always checked very, very carefully.” Burago added, “He was not fast. Speed means nothing. Math doesn’t depend on speed. It is about deep.”
At the Steklov in the early nineties, Perelman became an expert on the geometry of Riemannian and Alexandrov spaces—extensions of traditional Euclidean geometry—and began to publish articles in the leading Russian and American mathematics journals. In 1992, Perelman was invited to spend a semester each at New York University and Stony Brook University. By the time he left for the United States, that fall, the Russian economy had collapsed. Dan Stroock, a mathematician at M.I.T., recalls smuggling wads of dollars into the country to deliver to a retired mathematician at the Steklov, who, like many of his colleagues, had become destitute.
Perelman was pleased to be in the United States, the capital of the international mathematics community. He wore the same brown corduroy jacket every day and told friends at N.Y.U. that he lived on a diet of bread, cheese, and milk. He liked to walk to Brooklyn, where he had relatives and could buy traditional Russian brown bread. Some of his colleagues were taken aback by his fingernails, which were several inches long. “If they grow, why wouldn’t I let them grow?” he would say when someone asked why he didn’t cut them. Once a week, he and a young Chinese mathematician named Gang Tian drove to Princeton, to attend a seminar at the Institute for Advanced Study.
For several decades, the institute and nearby Princeton University had been centers of topological research. In the late seventies, William Thurston, a Princeton mathematician who liked to test out his ideas using scissors and construction paper, proposed a taxonomy for classifying manifolds of three dimensions. He argued that, while the manifolds could be made to take on many different shapes, they nonetheless had a “preferred” geometry, just as a piece of silk draped over a dressmaker’s mannequin takes on the mannequin’s form.
Thurston proposed that every three-dimensional manifold could be broken down into one or more of eight types of component, including a spherical type. Thurston’s theory—which became known as the geometrization conjecture—describes all possible three-dimensional manifolds and is thus a powerful generalization of the Poincaré. If it was confirmed, then Poincaré’s conjecture would be, too. Proving Thurston and Poincaré “definitely swings open doors,” Barry Mazur, a mathematician at Harvard, said. The implications of the conjectures for other disciplines may not be apparent for years, but for mathematicians the problems are fundamental. “This is a kind of twentieth-century Pythagorean theorem,” Mazur added. “It changes the landscape.”
In 1982, Thurston won a Fields Medal for his contributions to topology. That year, Richard Hamilton, a mathematician at Cornell, published a paper on an equation called the Ricci flow, which he suspected could be relevant for solving Thurston’s conjecture and thus the Poincaré. Like a heat equation, which describes how heat distributes itself evenly through a substance—flowing from hotter to cooler parts of a metal sheet, for example—to create a more uniform temperature, the Ricci flow, by smoothing out irregularities, gives manifolds a more uniform geometry.
Hamilton, the son of a Cincinnati doctor, defied the math profession’s nerdy stereotype. Brash and irreverent, he rode horses, windsurfed, and had a succession of girlfriends. He treated math as merely one of life’s pleasures. At forty-nine, he was considered a brilliant lecturer, but he had published relatively little beyond a series of seminal articles on the Ricci flow, and he had few graduate students. Perelman had read Hamilton’s papers and went to hear him give a talk at the Institute for Advanced Study. Afterward, Perelman shyly spoke to him.
“I really wanted to ask him something,” Perelman recalled. “He was smiling, and he was quite patient. He actually told me a couple of things that he published a few years later. He did not hesitate to tell me. Hamilton’s openness and generosity—it really attracted me. I can’t say that most mathematicians act like that.
“I was working on different things, though occasionally I would think about the Ricci flow,” Perelman added. “You didn’t have to be a great mathematician to see that this would be useful for geometrization. I felt I didn’t know very much. I kept asking questions.”
Shing-Tung Yau was also asking Hamilton questions about the Ricci flow. Yau and Hamilton had met in the seventies, and had become close, despite considerable differences in temperament and background. A mathematician at the University of California at San Diego who knows both men called them “the mathematical loves of each other’s lives.”
Yau’s family moved to Hong Kong from mainland China in 1949, when he was five months old, along with hundreds of thousands of other refugees fleeing Mao’s armies. The previous year, his father, a relief worker for the United Nations, had lost most of the family’s savings in a series of failed ventures. In Hong Kong, to support his wife and eight children, he tutored college students in classical Chinese literature and philosophy.
When Yau was fourteen, his father died of kidney cancer, leaving his mother dependent on handouts from Christian missionaries and whatever small sums she earned from selling handicrafts. Until then, Yau had been an indifferent student. But he began to devote himself to schoolwork, tutoring other students in math to make money. “Part of the thing that drives Yau is that he sees his own life as being his father’s revenge,” said Dan Stroock, the M.I.T. mathematician, who has known Yau for twenty years. “Yau’s father was like the Talmudist whose children are starving.”
Yau studied math at the Chinese University of Hong Kong, where he attracted the attention of Shiing-Shen Chern, the preëminent Chinese mathematician, who helped him win a scholarship to the University of California at Berkeley. Chern was the author of a famous theorem combining topology and geometry. He spent most of his career in the United States, at Berkeley. He made frequent visits to Hong Kong, Taiwan, and, later, China, where he was a revered symbol of Chinese intellectual achievement, to promote the study of math and science.
In 1969, Yau started graduate school at Berkeley, enrolling in seven graduate courses each term and auditing several others. He sent half of his scholarship money back to his mother in China and impressed his professors with his tenacity. He was obliged to share credit for his first major result when he learned that two other mathematicians were working on the same problem. In 1976, he proved a twenty-year-old conjecture pertaining to a type of manifold that is now crucial to string theory. A French mathematician had formulated a proof of the problem, which is known as Calabi’s conjecture, but Yau’s, because it was more general, was more powerful. (Physicists now refer to Calabi-Yau manifolds.) “He was not so much thinking up some original way of looking at a subject but solving extremely hard technical problems that at the time only he could solve, by sheer intellect and force of will,” Phillip Griffiths, a geometer and a former director of the Institute for Advanced Study, said.
In 1980, when Yau was thirty, he became one of the youngest mathematicians ever to be appointed to the permanent faculty of the Institute for Advanced Study, and he began to attract talented students. He won a Fields Medal two years later, the first Chinese ever to do so. By this time, Chern was seventy years old and on the verge of retirement. According to a relative of Chern’s, “Yau decided that he was going to be the next famous Chinese mathematician and that it was time for Chern to step down.”
Harvard had been trying to recruit Yau, and when, in 1983, it was about to make him a second offer Phillip Griffiths told the dean of faculty a version of a story from “The Romance of the Three Kingdoms,” a Chinese classic. In the third century A.D., a Chinese warlord dreamed of creating an empire, but the most brilliant general in China was working for a rival. Three times, the warlord went to his enemy’s kingdom to seek out the general. Impressed, the general agreed to join him, and together they succeeded in founding a dynasty. Taking the hint, the dean flew to Philadelphia, where Yau lived at the time, to make him an offer. Even so, Yau turned down the job. Finally, in 1987, he agreed to go to Harvard.
Yau’s entrepreneurial drive extended to collaborations with colleagues and students, and, in addition to conducting his own research, he began organizing seminars. He frequently allied himself with brilliantly inventive mathematicians, including Richard Schoen and William Meeks. But Yau was especially impressed by Hamilton, as much for his swagger as for his imagination. “I can have fun with Hamilton,” Yau told us during the string-theory conference in Beijing. “I can go swimming with him. I go out with him and his girlfriends and all that.” Yau was convinced that Hamilton could use the Ricci-flow equation to solve the Poincaré and Thurston conjectures, and he urged him to focus on the problems. “Meeting Yau changed his mathematical life,” a friend of both mathematicians said of Hamilton. “This was the first time he had been on to something extremely big. Talking to Yau gave him courage and direction.”
Yau believed that if he could help solve the Poincaré it would be a victory not just for him but also for China. In the mid-nineties, Yau and several other Chinese scholars began meeting with President Jiang Zemin to discuss how to rebuild the country’s scientific institutions, which had been largely destroyed during the Cultural Revolution. Chinese universities were in dire condition. According to Steve Smale, who won a Fields for proving the Poincaré in higher dimensions, and who, after retiring from Berkeley, taught in Hong Kong, Peking University had “halls filled with the smell of urine, one common room, one office for all the assistant professors,” and paid its faculty wretchedly low salaries. Yau persuaded a Hong Kong real-estate mogul to help finance a mathematics institute at the Chinese Academy of Sciences, in Beijing, and to endow a Fields-style medal for Chinese mathematicians under the age of forty-five. On his trips to China, Yau touted Hamilton and their joint work on the Ricci flow and the Poincaré as a model for young Chinese mathematicians. As he put it in Beijing, “They always say that the whole country should learn from Mao or some big heroes. So I made a joke to them, but I was half serious. I said the whole country should learn from Hamilton.”
Grigory Perelman was learning from Hamilton already. In 1993, he began a two-year fellowship at Berkeley. While he was there, Hamilton gave several talks on campus, and in one he mentioned that he was working on the Poincaré. Hamilton’s Ricci-flow strategy was extremely technical and tricky to execute. After one of his talks at Berkeley, he told Perelman about his biggest obstacle. As a space is smoothed under the Ricci flow, some regions deform into what mathematicians refer to as “singularities.” Some regions, called “necks,” become attenuated areas of infinite density. More troubling to Hamilton was a kind of singularity he called the “cigar.” If cigars formed, Hamilton worried, it might be impossible to achieve uniform geometry. Perelman realized that a paper he had written on Alexandrov spaces might help Hamilton prove Thurston’s conjecture—and the Poincaré—once Hamilton solved the cigar problem. “At some point, I asked Hamilton if he knew a certain collapsing result that I had proved but not published—which turned out to be very useful,” Perelman said. “Later, I realized that he didn’t understand what I was talking about.” Dan Stroock, of M.I.T., said, “Perelman may have learned stuff from Yau and Hamilton, but, at the time, they were not learning from him.”
By the end of his first year at Berkeley, Perelman had written several strikingly original papers. He was asked to give a lecture at the 1994 I.M.U. congress, in Zurich, and invited to apply for jobs at Stanford, Princeton, the Institute for Advanced Study, and the University of Tel Aviv. Like Yau, Perelman was a formidable problem solver. Instead of spending years constructing an intricate theoretical framework, or defining new areas of research, he focussed on obtaining particular results. According to Mikhail Gromov, a renowned Russian geometer who has collaborated with Perelman, he had been trying to overcome a technical difficulty relating to Alexandrov spaces and had apparently been stumped. “He couldn’t do it,” Gromov said. “It was hopeless.”
Perelman told us that he liked to work on several problems at once. At Berkeley, however, he found himself returning again and again to Hamilton’s Ricci-flow equation and the problem that Hamilton thought he could solve with it. Some of Perelman’s friends noticed that he was becoming more and more ascetic. Visitors from St. Petersburg who stayed in his apartment were struck by how sparsely furnished it was. Others worried that he seemed to want to reduce life to a set of rigid axioms. When a member of a hiring committee at Stanford asked him for a C.V. to include with requests for letters of recommendation, Perelman balked. “If they know my work, they don’t need my C.V.,” he said. “If they need my C.V., they don’t know my work.”
Ultimately, he received several job offers. But he declined them all, and in the summer of 1995 returned to St. Petersburg, to his old job at the Steklov Institute, where he was paid less than a hundred dollars a month. (He told a friend that he had saved enough money in the United States to live on for the rest of his life.) His father had moved to Israel two years earlier, and his younger sister was planning to join him there after she finished college. His mother, however, had decided to remain in St. Petersburg, and Perelman moved in with her. “I realize that in Russia I work better,” he told colleagues at the Steklov.
At twenty-nine, Perelman was firmly established as a mathematician and yet largely unburdened by professional responsibilities. He was free to pursue whatever problems he wanted to, and he knew that his work, should he choose to publish it, would be shown serious consideration. Yakov Eliashberg, a mathematician at Stanford who knew Perelman at Berkeley, thinks that Perelman returned to Russia in order to work on the Poincaré. “Why not?” Perelman said when we asked whether Eliashberg’s hunch was correct.
The Internet made it possible for Perelman to work alone while continuing to tap a common pool of knowledge. Perelman searched Hamilton’s papers for clues to his thinking and gave several seminars on his work. “He didn’t need any help,” Gromov said. “He likes to be alone. He reminds me of Newton—this obsession with an idea, working by yourself, the disregard for other people’s opinion. Newton was more obnoxious. Perelman is nicer, but very obsessed.”
In 1995, Hamilton published a paper in which he discussed a few of his ideas for completing a proof of the Poincaré. Reading the paper, Perelman realized that Hamilton had made no progress on overcoming his obstacles—the necks and the cigars. “I hadn’t seen any evidence of progress after early 1992,” Perelman told us. “Maybe he got stuck even earlier.” However, Perelman thought he saw a way around the impasse. In 1996, he wrote Hamilton a long letter outlining his notion, in the hope of collaborating. “He did not answer,” Perelman said. “So I decided to work alone.”
Yau had no idea that Hamilton’s work on the Poincaré had stalled. He was increasingly anxious about his own standing in the mathematics profession, particularly in China, where, he worried, a younger scholar could try to supplant him as Chern’s heir. More than a decade had passed since Yau had proved his last major result, though he continued to publish prolifically. “Yau wants to be the king of geometry,” Michael Anderson, a geometer at Stony Brook, said. “He believes that everything should issue from him, that he should have oversight. He doesn’t like people encroaching on his territory.” Determined to retain control over his field, Yau pushed his students to tackle big problems. At Harvard, he ran a notoriously tough seminar on differential geometry, which met for three hours at a time three times a week. Each student was assigned a recently published proof and asked to reconstruct it, fixing any errors and filling in gaps. Yau believed that a mathematician has an obligation to be explicit, and impressed on his students the importance of step-by-step rigor.
There are two ways to get credit for an original contribution in mathematics. The first is to produce an original proof. The second is to identify a significant gap in someone else’s proof and supply the missing chunk. However, only true mathematical gaps—missing or mistaken arguments—can be the basis for a claim of originality. Filling in gaps in exposition—shortcuts and abbreviations used to make a proof more efficient—does not count. When, in 1993, Andrew Wiles revealed that a gap had been found in his proof of Fermat’s last theorem, the problem became fair game for anyone, until, the following year, Wiles fixed the error. Most mathematicians would agree that, by contrast, if a proof’s implicit steps can be made explicit by an expert, then the gap is merely one of exposition, and the proof should be considered complete and correct.
Occasionally, the difference between a mathematical gap and a gap in exposition can be hard to discern. On at least one occasion, Yau and his students have seemed to confuse the two, making claims of originality that other mathematicians believe are unwarranted. In 1996, a young geometer at Berkeley named Alexander Givental had proved a mathematical conjecture about mirror symmetry, a concept that is fundamental to string theory. Though other mathematicians found Givental’s proof hard to follow, they were optimistic that he had solved the problem. As one geometer put it, “Nobody at the time said it was incomplete and incorrect.”
In the fall of 1997, Kefeng Liu, a former student of Yau’s who taught at Stanford, gave a talk at Harvard on mirror symmetry. According to two geometers in the audience, Liu proceeded to present a proof strikingly similar to Givental’s, describing it as a paper that he had co-authored with Yau and another student of Yau’s. “Liu mentioned Givental but only as one of a long list of people who had contributed to the field,” one of the geometers said. (Liu maintains that his proof was significantly different from Givental’s.)
Around the same time, Givental received an e-mail signed by Yau and his collaborators, explaining that they had found his arguments impossible to follow and his notation baffling, and had come up with a proof of their own. They praised Givental for his “brilliant idea” and wrote, “In the final version of our paper your important contribution will be acknowledged.”
A few weeks later, the paper, “Mirror Principle I,” appeared in the Asian Journal of Mathematics, which is co-edited by Yau. In it, Yau and his coauthors describe their result as “the first complete proof” of the mirror conjecture. They mention Givental’s work only in passing. “Unfortunately,” they write, his proof, “which has been read by many prominent experts, is incomplete.” However, they did not identify a specific mathematical gap.
Givental was taken aback. “I wanted to know what their objection was,” he told us. “Not to expose them or defend myself.” In March, 1998, he published a paper that included a three-page footnote in which he pointed out a number of similarities between Yau’s proof and his own. Several months later, a young mathematician at the University of Chicago who was asked by senior colleagues to investigate the dispute concluded that Givental’s proof was complete. Yau says that he had been working on the proof for years with his students and that they achieved their result independently of Givental. “We had our own ideas, and we wrote them up,” he says.
Around this time, Yau had his first serious conflict with Chern and the Chinese mathematical establishment. For years, Chern had been hoping to bring the I.M.U.’s congress to Beijing. According to several mathematicians who were active in the I.M.U. at the time, Yau made an eleventh-hour effort to have the congress take place in Hong Kong instead. But he failed to persuade a sufficient number of colleagues to go along with his proposal, and the I.M.U. ultimately decided to hold the 2002 congress in Beijing. (Yau denies that he tried to bring the congress to Hong Kong.) Among the delegates the I.M.U. appointed to a group that would be choosing speakers for the congress was Yau’s most successful student, Gang Tian, who had been at N.Y.U. with Perelman and was now a professor at M.I.T. The host committee in Beijing also asked Tian to give a plenary address.
Yau was caught by surprise. In March, 2000, he had published a survey of recent research in his field studded with glowing references to Tian and to their joint projects. He retaliated by organizing his first conference on string theory, which opened in Beijing a few days before the math congress began, in late August, 2002. He persuaded Stephen Hawking and several Nobel laureates to attend, and for days the Chinese newspapers were full of pictures of famous scientists. Yau even managed to arrange for his group to have an audience with Jiang Zemin. A mathematician who helped organize the math congress recalls that along the highway between Beijing and the airport there were “billboards with pictures of Stephen Hawking plastered everywhere.”
That summer, Yau wasn’t thinking much about the Poincaré. He had confidence in Hamilton, despite his slow pace. “Hamilton is a very good friend,” Yau told us in Beijing. “He is more than a friend. He is a hero. He is so original. We were working to finish our proof. Hamilton worked on it for twenty-five years. You work, you get tired. He probably got a little tired—and you want to take a rest.”
Then, on November 12, 2002, Yau received an e-mail message from a Russian mathematician whose name didn’t immediately register. “May I bring to your attention my paper,” the e-mail said.
On November 11th, Perelman had posted a thirty-nine-page paper entitled “The Entropy Formula for the Ricci Flow and Its Geometric Applications,” on arXiv.org, a Web site used by mathematicians to post preprints—articles awaiting publication in refereed journals. He then e-mailed an abstract of his paper to a dozen mathematicians in the United States—including Hamilton, Tian, and Yau—none of whom had heard from him for years. In the abstract, he explained that he had written “a sketch of an eclectic proof” of the geometrization conjecture.
Perelman had not mentioned the proof or shown it to anyone. “I didn’t have any friends with whom I could discuss this,” he said in St. Petersburg. “I didn’t want to discuss my work with someone I didn’t trust.” Andrew Wiles had also kept the fact that he was working on Fermat’s last theorem a secret, but he had had a colleague vet the proof before making it public. Perelman, by casually posting a proof on the Internet of one of the most famous problems in mathematics, was not just flouting academic convention but taking a considerable risk. If the proof was flawed, he would be publicly humiliated, and there would be no way to prevent another mathematician from fixing any errors and claiming victory. But Perelman said he was not particularly concerned. “My reasoning was: if I made an error and someone used my work to construct a correct proof I would be pleased,” he said. “I never set out to be the sole solver of the Poincaré.”
Gang Tian was in his office at M.I.T. when he received Perelman’s e-mail. He and Perelman had been friendly in 1992, when they were both at N.Y.U. and had attended the same weekly math seminar in Princeton. “I immediately realized its importance,” Tian said of Perelman’s paper. Tian began to read the paper and discuss it with colleagues, who were equally enthusiastic.
On November 19th, Vitali Kapovitch, a geometer, sent Perelman an e-mail:
Hi Grisha, Sorry to bother you but a lot of people are asking me about your preprint “The entropy formula for the Ricci . . .” Do I understand it correctly that while you cannot yet do all the steps in the Hamilton program you can do enough so that using some collapsing results you can prove geometrization? Vitali.
Perelman’s response, the next day, was terse: “That’s correct. Grisha.”
In fact, what Perelman had posted on the Internet was only the first installment of his proof. But it was sufficient for mathematicians to see that he had figured out how to solve the Poincaré. Barry Mazur, the Harvard mathematician, uses the image of a dented fender to describe Perelman’s achievement: “Suppose your car has a dented fender and you call a mechanic to ask how to smooth it out. The mechanic would have a hard time telling you what to do over the phone. You would have to bring the car into the garage for him to examine. Then he could tell you where to give it a few knocks. What Hamilton introduced and Perelman completed is a procedure that is independent of the particularities of the blemish. If you apply the Ricci flow to a 3-D space, it will begin to undent it and smooth it out. The mechanic would not need to even see the car—just apply the equation.” Perelman proved that the “cigars” that had troubled Hamilton could not actually occur, and he showed that the “neck” problem could be solved by performing an intricate sequence of mathematical surgeries: cutting out singularities and patching up the raw edges. “Now we have a procedure to smooth things and, at crucial points, control the breaks,” Mazur said.
Tian wrote to Perelman, asking him to lecture on his paper at M.I.T. Colleagues at Princeton and Stony Brook extended similar invitations. Perelman accepted them all and was booked for a month of lectures beginning in April, 2003. “Why not?” he told us with a shrug. Speaking of mathematicians generally, Fedor Nazarov, a mathematician at Michigan State University, said, “After you’ve solved a problem, you have a great urge to talk about it.”
Hamilton and Yau were stunned by Perelman’s announcement. “We felt that nobody else would be able to discover the solution,” Yau told us in Beijing. “But then, in 2002, Perelman said that he published something. He basically did a shortcut without doing all the detailed estimates that we did.” Moreover, Yau complained, Perelman’s proof “was written in such a messy way that we didn’t understand.”
Perelman’s April lecture tour was treated by mathematicians and by the press as a major event. Among the audience at his talk at Princeton were John Ball, Andrew Wiles, John Forbes Nash, Jr., who had proved the Riemannian embedding theorem, and John Conway, the inventor of the cellular automaton game Life. To the astonishment of many in the audience, Perelman said nothing about the Poincaré. “Here is a guy who proved a world-famous theorem and didn’t even mention it,” Frank Quinn, a mathematician at Virginia Tech, said. “He stated some key points and special properties, and then answered questions. He was establishing credibility. If he had beaten his chest and said, ‘I solved it,’ he would have got a huge amount of resistance.” He added, “People were expecting a strange sight. Perelman was much more normal than they expected.”
To Perelman’s disappointment, Hamilton did not attend that lecture or the next ones, at Stony Brook. “I’m a disciple of Hamilton’s, though I haven’t received his authorization,” Perelman told us. But John Morgan, at Columbia, where Hamilton now taught, was in the audience at Stony Brook, and after a lecture he invited Perelman to speak at Columbia. Perelman, hoping to see Hamilton, agreed. The lecture took place on a Saturday morning. Hamilton showed up late and asked no questions during either the long discussion session that followed the talk or the lunch after that. “I had the impression he had read only the first part of my paper,” Perelman said.
In the April 18, 2003, issue of Science, Yau was featured in an article about Perelman’s proof: “Many experts, although not all, seem convinced that Perelman has stubbed out the cigars and tamed the narrow necks. But they are less confident that he can control the number of surgeries. That could prove a fatal flaw, Yau warns, noting that many other attempted proofs of the Poincaré conjecture have stumbled over similar missing steps.” Proofs should be treated with skepticism until mathematicians have had a chance to review them thoroughly, Yau told us. Until then, he said, “it’s not math—it’s religion.”
By mid-July, Perelman had posted the final two installments of his proof on the Internet, and mathematicians had begun the work of formal explication, painstakingly retracing his steps. In the United States, at least two teams of experts had assigned themselves this task: Gang Tian (Yau’s rival) and John Morgan; and a pair of researchers at the University of Michigan. Both projects were supported by the Clay Institute, which planned to publish Tian and Morgan’s work as a book. The book, in addition to providing other mathematicians with a guide to Perelman’s logic, would allow him to be considered for the Clay Institute’s million-dollar prize for solving the Poincaré. (To be eligible, a proof must be published in a peer-reviewed venue and withstand two years of scrutiny by the mathematical community.)
On September 10, 2004, more than a year after Perelman returned to St. Petersburg, he received a long e-mail from Tian, who said that he had just attended a two-week workshop at Princeton devoted to Perelman’s proof. “I think that we have understood the whole paper,” Tian wrote. “It is all right.”
Perelman did not write back. As he explained to us, “I didn’t worry too much myself. This was a famous problem. Some people needed time to get accustomed to the fact that this is no longer a conjecture. I personally decided for myself that it was right for me to stay away from verification and not to participate in all these meetings. It is important for me that I don’t influence this process.”
In July of that year, the National Science Foundation had given nearly a million dollars in grants to Yau, Hamilton, and several students of Yau’s to study and apply Perelman’s “breakthrough.” An entire branch of mathematics had grown up around efforts to solve the Poincaré, and now that branch appeared at risk of becoming obsolete. Michael Freedman, who won a Fields for proving the Poincaré conjecture for the fourth dimension, told the Times that Perelman’s proof was a “small sorrow for this particular branch of topology.” Yuri Burago said, “It kills the field. After this is done, many mathematicians will move to other branches of mathematics.”
Five months later, Chern died, and Yau’s efforts to insure that he-—not Tian—was recognized as his successor turned vicious. “It’s all about their primacy in China and their leadership among the expatriate Chinese,” Joseph Kohn, a former chairman of the Prince-ton mathematics department, said. “Yau’s not jealous of Tian’s mathematics, but he’s jealous of his power back in China.”
Though Yau had not spent more than a few months at a time on mainland China since he was an infant, he was convinced that his status as the only Chinese Fields Medal winner should make him Chern’s successor. In a speech he gave at Zhejiang University, in Hangzhou, during the summer of 2004, Yau reminded his listeners of his Chinese roots. “When I stepped out from the airplane, I touched the soil of Beijing and felt great joy to be in my mother country,” he said. “I am proud to say that when I was awarded the Fields Medal in mathematics, I held no passport of any country and should certainly be considered Chinese.”
The following summer, Yau returned to China and, in a series of interviews with Chinese reporters, attacked Tian and the mathematicians at Peking University. In an article published in a Beijing science newspaper, which ran under the headline “SHING-TUNG YAU IS SLAMMING ACADEMIC CORRUPTION IN CHINA,” Yau called Tian “a complete mess.” He accused him of holding multiple professorships and of collecting a hundred and twenty-five thousand dollars for a few months’ work at a Chinese university, while students were living on a hundred dollars a month. He also charged Tian with shoddy scholarship and plagiarism, and with intimidating his graduate students into letting him add his name to their papers. “Since I promoted him all the way to his academic fame today, I should also take responsibility for his improper behavior,” Yau was quoted as saying to a reporter, explaining why he felt obliged to speak out.
In another interview, Yau described how the Fields committee had passed Tian over in 1988 and how he had lobbied on Tian’s behalf with various prize committees, including one at the National Science Foundation, which awarded Tian five hundred thousand dollars in 1994.
Tian was appalled by Yau’s attacks, but he felt that, as Yau’s former student, there was little he could do about them. “His accusations were baseless,” Tian told us. But, he added, “I have deep roots in Chinese culture. A teacher is a teacher. There is respect. It is very hard for me to think of anything to do.”
While Yau was in China, he visited Xi-Ping Zhu, a protégé of his who was now chairman of the mathematics department at Sun Yat-sen University. In the spring of 2003, after Perelman completed his lecture tour in the United States, Yau had recruited Zhu and another student, Huai-Dong Cao, a professor at Lehigh University, to undertake an explication of Perelman’s proof. Zhu and Cao had studied the Ricci flow under Yau, who considered Zhu, in particular, to be a mathematician of exceptional promise. “We have to figure out whether Perelman’s paper holds together,” Yau told them. Yau arranged for Zhu to spend the 2005-06 academic year at Harvard, where he gave a seminar on Perelman’s proof and continued to work on his paper with Cao.
On April 13th of this year, the thirty-one mathematicians on the editorial board of the Asian Journal of Mathematics received a brief e-mail from Yau and the journal’s co-editor informing them that they had three days to comment on a paper by Xi-Ping Zhu and Huai-Dong Cao titled “The Hamilton-Perelman Theory of Ricci Flow: The Poincaré and Geometrization Conjectures,” which Yau planned to publish in the journal. The e-mail did not include a copy of the paper, reports from referees, or an abstract. At least one board member asked to see the paper but was told that it was not available. On April 16th, Cao received a message from Yau telling him that the paper had been accepted by the A.J.M., and an abstract was posted on the journal’s Web site.
A month later, Yau had lunch in Cambridge with Jim Carlson, the president of the Clay Institute. He told Carlson that he wanted to trade a copy of Zhu and Cao’s paper for a copy of Tian and Morgan’s book manuscript. Yau told us he was worried that Tian would try to steal from Zhu and Cao’s work, and he wanted to give each party simultaneous access to what the other had written. “I had a lunch with Carlson to request to exchange both manuscripts to make sure that nobody can copy the other,” Yau said. Carlson demurred, explaining that the Clay Institute had not yet received Tian and Morgan’s complete manuscript.
By the end of the following week, the title of Zhu and Cao’s paper on the A.J.M.’s Web site had changed, to “A Complete Proof of the Poincaré and Geometrization Conjectures: Application of the Hamilton-Perelman Theory of the Ricci Flow.” The abstract had also been revised. A new sentence explained, “This proof should be considered as the crowning achievement of the Hamilton-Perelman theory of Ricci flow.”
Zhu and Cao’s paper was more than three hundred pages long and filled the A.J.M.’s entire June issue. The bulk of the paper is devoted to reconstructing many of Hamilton’s Ricci-flow results—including results that Perelman had made use of in his proof—and much of Perelman’s proof of the Poincaré. In their introduction, Zhu and Cao credit Perelman with having “brought in fresh new ideas to figure out important steps to overcome the main obstacles that remained in the program of Hamilton.” However, they write, they were obliged to “substitute several key arguments of Perelman by new approaches based on our study, because we were unable to comprehend these original arguments of Perelman which are essential to the completion of the geometrization program.” Mathematicians familiar with Perelman’s proof disputed the idea that Zhu and Cao had contributed significant new approaches to the Poincaré. “Perelman already did it and what he did was complete and correct,” John Morgan said. “I don’t see that they did anything different.”
By early June, Yau had begun to promote the proof publicly. On June 3rd, at his mathematics institute in Beijing, he held a press conference. The acting director of the mathematics institute, attempting to explain the relative contributions of the different mathematicians who had worked on the Poincaré, said, “Hamilton contributed over fifty per cent; the Russian, Perelman, about twenty-five per cent; and the Chinese, Yau, Zhu, and Cao et al., about thirty per cent.” (Evidently, simple addition can sometimes trip up even a mathematician.) Yau added, “Given the significance of the Poincaré, that Chinese mathematicians played a thirty-per-cent role is by no means easy. It is a very important contribution.”
On June 12th, the week before Yau’s conference on string theory opened in Beijing, the South China Morning Post reported, “Mainland mathematicians who helped crack a ‘millennium math problem’ will present the methodology and findings to physicist Stephen Hawking. . . . Yau Shing-Tung, who organized Professor Hawking’s visit and is also Professor Cao’s teacher, said yesterday he would present the findings to Professor Hawking because he believed the knowledge would help his research into the formation of black holes.”
On the morning of his lecture in Beijing, Yau told us, “We want our contribution understood. And this is also a strategy to encourage Zhu, who is in China and who has done really spectacular work. I mean, important work with a century-long problem, which will probably have another few century-long implications. If you can attach your name in any way, it is a contribution.”
E. T. Bell, the author of “Men of Mathematics,” a witty history of the discipline published in 1937, once lamented “the squabbles over priority which disfigure scientific history.” But in the days before e-mail, blogs, and Web sites, a certain decorum usually prevailed. In 1881, Poincaré, who was then at the University of Caen, had an altercation with a German mathematician in Leipzig named Felix Klein. Poincaré had published several papers in which he labelled certain functions “Fuchsian,” after another mathematician. Klein wrote to Poincaré, pointing out that he and others had done significant work on these functions, too. An exchange of polite letters between Leipzig and Caen ensued. Poincaré’s last word on the subject was a quote from Goethe’s “Faust”: “Name ist Schall und Rauch.” Loosely translated, that corresponds to Shakespeare’s “What’s in a name?”
This, essentially, is what Yau’s friends are asking themselves. “I find myself getting annoyed with Yau that he seems to feel the need for more kudos,” Dan Stroock, of M.I.T., said. “This is a guy who did magnificent things, for which he was magnificently rewarded. He won every prize to be won. I find it a little mean of him to seem to be trying to get a share of this as well.” Stroock pointed out that, twenty-five years ago, Yau was in a situation very similar to the one Perelman is in today. His most famous result, on Calabi-Yau manifolds, was hugely important for theoretical physics. “Calabi outlined a program,” Stroock said. “In a real sense, Yau was Calabi’s Perelman. Now he’s on the other side. He’s had no compunction at all in taking the lion’s share of credit for Calabi-Yau. And now he seems to be resenting Perelman getting credit for completing Hamilton’s program. I don’t know if the analogy has ever occurred to him.”
Mathematics, more than many other fields, depends on collaboration. Most problems require the insights of several mathematicians in order to be solved, and the profession has evolved a standard for crediting individual contributions that is as stringent as the rules governing math itself. As Perelman put it, “If everyone is honest, it is natural to share ideas.” Many mathematicians view Yau’s conduct over the Poincaré as a violation of this basic ethic, and worry about the damage it has caused the profession. “Politics, power, and control have no legitimate role in our community, and they threaten the integrity of our field,” Phillip Griffiths said.
Perelman likes to attend opera performances at the Mariinsky Theatre, in St. Petersburg. Sitting high up in the back of the house, he can’t make out the singers’ expressions or see the details of their costumes. But he cares only about the sound of their voices, and he says that the acoustics are better where he sits than anywhere else in the theatre. Perelman views the mathematics community—and much of the larger world—from a similar remove.
Before we arrived in St. Petersburg, on June 23rd, we had sent several messages to his e-mail address at the Steklov Institute, hoping to arrange a meeting, but he had not replied. We took a taxi to his apartment building and, reluctant to intrude on his privacy, left a book—a collection of John Nash’s papers—in his mailbox, along with a card saying that we would be sitting on a bench in a nearby playground the following afternoon. The next day, after Perelman failed to appear, we left a box of pearl tea and a note describing some of the questions we hoped to discuss with him. We repeated this ritual a third time. Finally, believing that Perelman was out of town, we pressed the buzzer for his apartment, hoping at least to speak with his mother. A woman answered and let us inside. Perelman met us in the dimly lit hallway of the apartment. It turned out that he had not checked his Steklov e-mail address for months, and had not looked in his mailbox all week. He had no idea who we were.
We arranged to meet at ten the following morning on Nevsky Prospekt. From there, Perelman, dressed in a sports coat and loafers, took us on a four-hour walking tour of the city, commenting on every building and vista. After that, we all went to a vocal competition at the St. Petersburg Conservatory, which lasted for five hours. Perelman repeatedly said that he had retired from the mathematics community and no longer considered himself a professional mathematician. He mentioned a dispute that he had had years earlier with a collaborator over how to credit the author of a particular proof, and said that he was dismayed by the discipline’s lax ethics. “It is not people who break ethical standards who are regarded as aliens,” he said. “It is people like me who are isolated.” We asked him whether he had read Cao and Zhu’s paper. “It is not clear to me what new contribution did they make,” he said. “Apparently, Zhu did not quite understand the argument and reworked it.” As for Yau, Perelman said, “I can’t say I’m outraged. Other people do worse. Of course, there are many mathematicians who are more or less honest. But almost all of them are conformists. They are more or less honest, but they tolerate those who are not honest.”
The prospect of being awarded a Fields Medal had forced him to make a complete break with his profession. “As long as I was not conspicuous, I had a choice,” Perelman explained. “Either to make some ugly thing”—a fuss about the math community’s lack of integrity—“or, if I didn’t do this kind of thing, to be treated as a pet. Now, when I become a very conspicuous person, I cannot stay a pet and say nothing. That is why I had to quit.” We asked Perelman whether, by refusing the Fields and withdrawing from his profession, he was eliminating any possibility of influencing the discipline. “I am not a politician!” he replied, angrily. Perelman would not say whether his objection to awards extended to the Clay Institute’s million-dollar prize. “I’m not going to decide whether to accept the prize until it is offered,” he said.
Mikhail Gromov, the Russian geometer, said that he understood Perelman’s logic: “To do great work, you have to have a pure mind. You can think only about the mathematics. Everything else is human weakness. Accepting prizes is showing weakness.” Others might view Perelman’s refusal to accept a Fields as arrogant, Gromov said, but his principles are admirable. “The ideal scientist does science and cares about nothing else,” he said. “He wants to live this ideal. Now, I don’t think he really lives on this ideal plane. But he wants to.”
MANIFOLD DESTINY
by SYLVIA NASAR AND DAVID GRUBER
A legendary problem and the battle over who solved it.
Issue of 2006-08-28Posted 2006-08-21
On the evening of June 20th, several hundred physicists, including a Nobel laureate, assembled in an auditorium at the Friendship Hotel in Beijing for a lecture by the Chinese mathematician Shing-Tung Yau. In the late nineteen-seventies, when Yau was in his twenties, he had made a series of breakthroughs that helped launch the string-theory revolution in physics and earned him, in addition to a Fields Medal—the most coveted award in mathematics—a reputation in both disciplines as a thinker of unrivalled technical power.
Yau had since become a professor of mathematics at Harvard and the director of mathematics institutes in Beijing and Hong Kong, dividing his time between the United States and China. His lecture at the Friendship Hotel was part of an international conference on string theory, which he had organized with the support of the Chinese government, in part to promote the country’s recent advances in theoretical physics. (More than six thousand students attended the keynote address, which was delivered by Yau’s close friend Stephen Hawking, in the Great Hall of the People.) The subject of Yau’s talk was something that few in his audience knew much about: the Poincaré conjecture, a century-old conundrum about the characteristics of three-dimensional spheres, which, because it has important implications for mathematics and cosmology and because it has eluded all attempts at solution, is regarded by mathematicians as a holy grail.
Yau, a stocky man of fifty-seven, stood at a lectern in shirtsleeves and black-rimmed glasses and, with his hands in his pockets, described how two of his students, Xi-Ping Zhu and Huai-Dong Cao, had completed a proof of the Poincaré conjecture a few weeks earlier. “I’m very positive about Zhu and Cao’s work,” Yau said. “Chinese mathematicians should have every reason to be proud of such a big success in completely solving the puzzle.” He said that Zhu and Cao were indebted to his longtime American collaborator Richard Hamilton, who deserved most of the credit for solving the Poincaré. He also mentioned Grigory Perelman, a Russian mathematician who, he acknowledged, had made an important contribution. Nevertheless, Yau said, “in Perelman’s work, spectacular as it is, many key ideas of the proofs are sketched or outlined, and complete details are often missing.” He added, “We would like to get Perelman to make comments. But Perelman resides in St. Petersburg and refuses to communicate with other people.”
For ninety minutes, Yau discussed some of the technical details of his students’ proof. When he was finished, no one asked any questions. That night, however, a Brazilian physicist posted a report of the lecture on his blog. “Looks like China soon will take the lead also in mathematics,” he wrote.
Grigory Perelman is indeed reclusive. He left his job as a researcher at the Steklov Institute of Mathematics, in St. Petersburg, last December; he has few friends; and he lives with his mother in an apartment on the outskirts of the city. Although he had never granted an interview before, he was cordial and frank when we visited him, in late June, shortly after Yau’s conference in Beijing, taking us on a long walking tour of the city. “I’m looking for some friends, and they don’t have to be mathematicians,” he said. The week before the conference, Perelman had spent hours discussing the Poincaré conjecture with Sir John M. Ball, the fifty-eight-year-old president of the International Mathematical Union, the discipline’s influential professional association. The meeting, which took place at a conference center in a stately mansion overlooking the Neva River, was highly unusual. At the end of May, a committee of nine prominent mathematicians had voted to award Perelman a Fields Medal for his work on the Poincaré, and Ball had gone to St. Petersburg to persuade him to accept the prize in a public ceremony at the I.M.U.’s quadrennial congress, in Madrid, on August 22nd.
The Fields Medal, like the Nobel Prize, grew, in part, out of a desire to elevate science above national animosities. German mathematicians were excluded from the first I.M.U. congress, in 1924, and, though the ban was lifted before the next one, the trauma it caused led, in 1936, to the establishment of the Fields, a prize intended to be “as purely international and impersonal as possible.”
However, the Fields Medal, which is awarded every four years, to between two and four mathematicians, is supposed not only to reward past achievements but also to stimulate future research; for this reason, it is given only to mathematicians aged forty and younger. In recent decades, as the number of professional mathematicians has grown, the Fields Medal has become increasingly prestigious. Only forty-four medals have been awarded in nearly seventy years—including three for work closely related to the Poincaré conjecture—and no mathematician has ever refused the prize. Nevertheless, Perelman told Ball that he had no intention of accepting it. “I refuse,” he said simply.
Over a period of eight months, beginning in November, 2002, Perelman posted a proof of the Poincaré on the Internet in three installments. Like a sonnet or an aria, a mathematical proof has a distinct form and set of conventions. It begins with axioms, or accepted truths, and employs a series of logical statements to arrive at a conclusion. If the logic is deemed to be watertight, then the result is a theorem. Unlike proof in law or science, which is based on evidence and therefore subject to qualification and revision, a proof of a theorem is definitive. Judgments about the accuracy of a proof are mediated by peer-reviewed journals; to insure fairness, reviewers are supposed to be carefully chosen by journal editors, and the identity of a scholar whose pa-per is under consideration is kept secret. Publication implies that a proof is complete, correct, and original.
By these standards, Perelman’s proof was unorthodox. It was astonishingly brief for such an ambitious piece of work; logic sequences that could have been elaborated over many pages were often severely compressed. Moreover, the proof made no direct mention of the Poincaré and included many elegant results that were irrelevant to the central argument. But, four years later, at least two teams of experts had vetted the proof and had found no significant gaps or errors in it. A consensus was emerging in the math community: Perelman had solved the Poincaré. Even so, the proof’s complexity—and Perelman’s use of shorthand in making some of his most important claims—made it vulnerable to challenge. Few mathematicians had the expertise necessary to evaluate and defend it.
After giving a series of lectures on the proof in the United States in 2003, Perelman returned to St. Petersburg. Since then, although he had continued to answer queries about it by e-mail, he had had minimal contact with colleagues and, for reasons no one understood, had not tried to publish it. Still, there was little doubt that Perelman, who turned forty on June 13th, deserved a Fields Medal. As Ball planned the I.M.U.’s 2006 congress, he began to conceive of it as a historic event. More than three thousand mathematicians would be attending, and King Juan Carlos of Spain had agreed to preside over the awards ceremony. The I.M.U.’s newsletter predicted that the congress would be remembered as “the occasion when this conjecture became a theorem.” Ball, determined to make sure that Perelman would be there, decided to go to St. Petersburg.
Ball wanted to keep his visit a secret—the names of Fields Medal recipients are announced officially at the awards ceremony—and the conference center where he met with Perelman was deserted. For ten hours over two days, he tried to persuade Perelman to agree to accept the prize. Perelman, a slender, balding man with a curly beard, bushy eyebrows, and blue-green eyes, listened politely. He had not spoken English for three years, but he fluently parried Ball’s entreaties, at one point taking Ball on a long walk—one of Perelman’s favorite activities. As he summed up the conversation two weeks later: “He proposed to me three alternatives: accept and come; accept and don’t come, and we will send you the medal later; third, I don’t accept the prize. From the very beginning, I told him I have chosen the third one.” The Fields Medal held no interest for him, Perelman explained. “It was completely irrelevant for me,” he said. “Everybody understood that if the proof is correct then no other recognition is needed.”
Proofs of the Poincaré have been announced nearly every year since the conjecture was formulated, by Henri Poincaré, more than a hundred years ago. Poincaré was a cousin of Raymond Poincaré, the President of France during the First World War, and one of the most creative mathematicians of the nineteenth century. Slight, myopic, and notoriously absent-minded, he conceived his famous problem in 1904, eight years before he died, and tucked it as an offhand question into the end of a sixty-five-page paper.
Poincaré didn’t make much progress on proving the conjecture. “Cette question nous entraînerait trop loin” (“This question would take us too far”), he wrote. He was a founder of topology, also known as “rubber-sheet geometry,” for its focus on the intrinsic properties of spaces. From a topologist’s perspective, there is no difference between a bagel and a coffee cup with a handle. Each has a single hole and can be manipulated to resemble the other without being torn or cut. Poincaré used the term “manifold” to describe such an abstract topological space. The simplest possible two-dimensional manifold is the surface of a soccer ball, which, to a topologist, is a sphere—even when it is stomped on, stretched, or crumpled. The proof that an object is a so-called two-sphere, since it can take on any number of shapes, is that it is “simply connected,” meaning that no holes puncture it. Unlike a soccer ball, a bagel is not a true sphere. If you tie a slipknot around a soccer ball, you can easily pull the slipknot closed by sliding it along the surface of the ball. But if you tie a slipknot around a bagel through the hole in its middle you cannot pull the slipknot closed without tearing the bagel.
Two-dimensional manifolds were well understood by the mid-nineteenth century. But it remained unclear whether what was true for two dimensions was also true for three. Poincaré proposed that all closed, simply connected, three-dimensional manifolds—those which lack holes and are of finite extent—were spheres. The conjecture was potentially important for scientists studying the largest known three-dimensional manifold: the universe. Proving it mathematically, however, was far from easy. Most attempts were merely embarrassing, but some led to important mathematical discoveries, including proofs of Dehn’s Lemma, the Sphere Theorem, and the Loop Theorem, which are now fundamental concepts in topology.
By the nineteen-sixties, topology had become one of the most productive areas of mathematics, and young topologists were launching regular attacks on the Poincaré. To the astonishment of most mathematicians, it turned out that manifolds of the fourth, fifth, and higher dimensions were more tractable than those of the third dimension. By 1982, Poincaré’s conjecture had been proved in all dimensions except the third. In 2000, the Clay Mathematics Institute, a private foundation that promotes mathematical research, named the Poincaré one of the seven most important outstanding problems in mathematics and offered a million dollars to anyone who could prove it.
“My whole life as a mathematician has been dominated by the Poincaré conjecture,” John Morgan, the head of the mathematics department at Columbia University, said. “I never thought I’d see a solution. I thought nobody could touch it.”
Grigory Perelman did not plan to become a mathematician. “There was never a decision point,” he said when we met. We were outside the apartment building where he lives, in Kupchino, a neighborhood of drab high-rises. Perelman’s father, who was an electrical engineer, encouraged his interest in math. “He gave me logical and other math problems to think about,” Perelman said. “He got a lot of books for me to read. He taught me how to play chess. He was proud of me.” Among the books his father gave him was a copy of “Physics for Entertainment,” which had been a best-seller in the Soviet Union in the nineteen-thirties. In the foreword, the book’s author describes the contents as “conundrums, brain-teasers, entertaining anecdotes, and unexpected comparisons,” adding, “I have quoted extensively from Jules Verne, H. G. Wells, Mark Twain and other writers, because, besides providing entertainment, the fantastic experiments these writers describe may well serve as instructive illustrations at physics classes.” The book’s topics included how to jump from a moving car, and why, “according to the law of buoyancy, we would never drown in the Dead Sea.”
The notion that Russian society considered worthwhile what Perelman did for pleasure came as a surprise. By the time he was fourteen, he was the star performer of a local math club. In 1982, the year that Shing-Tung Yau won a Fields Medal, Perelman earned a perfect score and the gold medal at the International Mathematical Olympiad, in Budapest. He was friendly with his teammates but not close—“I had no close friends,” he said. He was one of two or three Jews in his grade, and he had a passion for opera, which also set him apart from his peers. His mother, a math teacher at a technical college, played the violin and began taking him to the opera when he was six. By the time Perelman was fifteen, he was spending his pocket money on records. He was thrilled to own a recording of a famous 1946 performance of “La Traviata,” featuring Licia Albanese as Violetta. “Her voice was very good,” he said.
At Leningrad University, which Perelman entered in 1982, at the age of sixteen, he took advanced classes in geometry and solved a problem posed by Yuri Burago, a mathematician at the Steklov Institute, who later became his Ph.D. adviser. “There are a lot of students of high ability who speak before thinking,” Burago said. “Grisha was different. He thought deeply. His answers were always correct. He always checked very, very carefully.” Burago added, “He was not fast. Speed means nothing. Math doesn’t depend on speed. It is about deep.”
At the Steklov in the early nineties, Perelman became an expert on the geometry of Riemannian and Alexandrov spaces—extensions of traditional Euclidean geometry—and began to publish articles in the leading Russian and American mathematics journals. In 1992, Perelman was invited to spend a semester each at New York University and Stony Brook University. By the time he left for the United States, that fall, the Russian economy had collapsed. Dan Stroock, a mathematician at M.I.T., recalls smuggling wads of dollars into the country to deliver to a retired mathematician at the Steklov, who, like many of his colleagues, had become destitute.
Perelman was pleased to be in the United States, the capital of the international mathematics community. He wore the same brown corduroy jacket every day and told friends at N.Y.U. that he lived on a diet of bread, cheese, and milk. He liked to walk to Brooklyn, where he had relatives and could buy traditional Russian brown bread. Some of his colleagues were taken aback by his fingernails, which were several inches long. “If they grow, why wouldn’t I let them grow?” he would say when someone asked why he didn’t cut them. Once a week, he and a young Chinese mathematician named Gang Tian drove to Princeton, to attend a seminar at the Institute for Advanced Study.
For several decades, the institute and nearby Princeton University had been centers of topological research. In the late seventies, William Thurston, a Princeton mathematician who liked to test out his ideas using scissors and construction paper, proposed a taxonomy for classifying manifolds of three dimensions. He argued that, while the manifolds could be made to take on many different shapes, they nonetheless had a “preferred” geometry, just as a piece of silk draped over a dressmaker’s mannequin takes on the mannequin’s form.
Thurston proposed that every three-dimensional manifold could be broken down into one or more of eight types of component, including a spherical type. Thurston’s theory—which became known as the geometrization conjecture—describes all possible three-dimensional manifolds and is thus a powerful generalization of the Poincaré. If it was confirmed, then Poincaré’s conjecture would be, too. Proving Thurston and Poincaré “definitely swings open doors,” Barry Mazur, a mathematician at Harvard, said. The implications of the conjectures for other disciplines may not be apparent for years, but for mathematicians the problems are fundamental. “This is a kind of twentieth-century Pythagorean theorem,” Mazur added. “It changes the landscape.”
In 1982, Thurston won a Fields Medal for his contributions to topology. That year, Richard Hamilton, a mathematician at Cornell, published a paper on an equation called the Ricci flow, which he suspected could be relevant for solving Thurston’s conjecture and thus the Poincaré. Like a heat equation, which describes how heat distributes itself evenly through a substance—flowing from hotter to cooler parts of a metal sheet, for example—to create a more uniform temperature, the Ricci flow, by smoothing out irregularities, gives manifolds a more uniform geometry.
Hamilton, the son of a Cincinnati doctor, defied the math profession’s nerdy stereotype. Brash and irreverent, he rode horses, windsurfed, and had a succession of girlfriends. He treated math as merely one of life’s pleasures. At forty-nine, he was considered a brilliant lecturer, but he had published relatively little beyond a series of seminal articles on the Ricci flow, and he had few graduate students. Perelman had read Hamilton’s papers and went to hear him give a talk at the Institute for Advanced Study. Afterward, Perelman shyly spoke to him.
“I really wanted to ask him something,” Perelman recalled. “He was smiling, and he was quite patient. He actually told me a couple of things that he published a few years later. He did not hesitate to tell me. Hamilton’s openness and generosity—it really attracted me. I can’t say that most mathematicians act like that.
“I was working on different things, though occasionally I would think about the Ricci flow,” Perelman added. “You didn’t have to be a great mathematician to see that this would be useful for geometrization. I felt I didn’t know very much. I kept asking questions.”
Shing-Tung Yau was also asking Hamilton questions about the Ricci flow. Yau and Hamilton had met in the seventies, and had become close, despite considerable differences in temperament and background. A mathematician at the University of California at San Diego who knows both men called them “the mathematical loves of each other’s lives.”
Yau’s family moved to Hong Kong from mainland China in 1949, when he was five months old, along with hundreds of thousands of other refugees fleeing Mao’s armies. The previous year, his father, a relief worker for the United Nations, had lost most of the family’s savings in a series of failed ventures. In Hong Kong, to support his wife and eight children, he tutored college students in classical Chinese literature and philosophy.
When Yau was fourteen, his father died of kidney cancer, leaving his mother dependent on handouts from Christian missionaries and whatever small sums she earned from selling handicrafts. Until then, Yau had been an indifferent student. But he began to devote himself to schoolwork, tutoring other students in math to make money. “Part of the thing that drives Yau is that he sees his own life as being his father’s revenge,” said Dan Stroock, the M.I.T. mathematician, who has known Yau for twenty years. “Yau’s father was like the Talmudist whose children are starving.”
Yau studied math at the Chinese University of Hong Kong, where he attracted the attention of Shiing-Shen Chern, the preëminent Chinese mathematician, who helped him win a scholarship to the University of California at Berkeley. Chern was the author of a famous theorem combining topology and geometry. He spent most of his career in the United States, at Berkeley. He made frequent visits to Hong Kong, Taiwan, and, later, China, where he was a revered symbol of Chinese intellectual achievement, to promote the study of math and science.
In 1969, Yau started graduate school at Berkeley, enrolling in seven graduate courses each term and auditing several others. He sent half of his scholarship money back to his mother in China and impressed his professors with his tenacity. He was obliged to share credit for his first major result when he learned that two other mathematicians were working on the same problem. In 1976, he proved a twenty-year-old conjecture pertaining to a type of manifold that is now crucial to string theory. A French mathematician had formulated a proof of the problem, which is known as Calabi’s conjecture, but Yau’s, because it was more general, was more powerful. (Physicists now refer to Calabi-Yau manifolds.) “He was not so much thinking up some original way of looking at a subject but solving extremely hard technical problems that at the time only he could solve, by sheer intellect and force of will,” Phillip Griffiths, a geometer and a former director of the Institute for Advanced Study, said.
In 1980, when Yau was thirty, he became one of the youngest mathematicians ever to be appointed to the permanent faculty of the Institute for Advanced Study, and he began to attract talented students. He won a Fields Medal two years later, the first Chinese ever to do so. By this time, Chern was seventy years old and on the verge of retirement. According to a relative of Chern’s, “Yau decided that he was going to be the next famous Chinese mathematician and that it was time for Chern to step down.”
Harvard had been trying to recruit Yau, and when, in 1983, it was about to make him a second offer Phillip Griffiths told the dean of faculty a version of a story from “The Romance of the Three Kingdoms,” a Chinese classic. In the third century A.D., a Chinese warlord dreamed of creating an empire, but the most brilliant general in China was working for a rival. Three times, the warlord went to his enemy’s kingdom to seek out the general. Impressed, the general agreed to join him, and together they succeeded in founding a dynasty. Taking the hint, the dean flew to Philadelphia, where Yau lived at the time, to make him an offer. Even so, Yau turned down the job. Finally, in 1987, he agreed to go to Harvard.
Yau’s entrepreneurial drive extended to collaborations with colleagues and students, and, in addition to conducting his own research, he began organizing seminars. He frequently allied himself with brilliantly inventive mathematicians, including Richard Schoen and William Meeks. But Yau was especially impressed by Hamilton, as much for his swagger as for his imagination. “I can have fun with Hamilton,” Yau told us during the string-theory conference in Beijing. “I can go swimming with him. I go out with him and his girlfriends and all that.” Yau was convinced that Hamilton could use the Ricci-flow equation to solve the Poincaré and Thurston conjectures, and he urged him to focus on the problems. “Meeting Yau changed his mathematical life,” a friend of both mathematicians said of Hamilton. “This was the first time he had been on to something extremely big. Talking to Yau gave him courage and direction.”
Yau believed that if he could help solve the Poincaré it would be a victory not just for him but also for China. In the mid-nineties, Yau and several other Chinese scholars began meeting with President Jiang Zemin to discuss how to rebuild the country’s scientific institutions, which had been largely destroyed during the Cultural Revolution. Chinese universities were in dire condition. According to Steve Smale, who won a Fields for proving the Poincaré in higher dimensions, and who, after retiring from Berkeley, taught in Hong Kong, Peking University had “halls filled with the smell of urine, one common room, one office for all the assistant professors,” and paid its faculty wretchedly low salaries. Yau persuaded a Hong Kong real-estate mogul to help finance a mathematics institute at the Chinese Academy of Sciences, in Beijing, and to endow a Fields-style medal for Chinese mathematicians under the age of forty-five. On his trips to China, Yau touted Hamilton and their joint work on the Ricci flow and the Poincaré as a model for young Chinese mathematicians. As he put it in Beijing, “They always say that the whole country should learn from Mao or some big heroes. So I made a joke to them, but I was half serious. I said the whole country should learn from Hamilton.”
Grigory Perelman was learning from Hamilton already. In 1993, he began a two-year fellowship at Berkeley. While he was there, Hamilton gave several talks on campus, and in one he mentioned that he was working on the Poincaré. Hamilton’s Ricci-flow strategy was extremely technical and tricky to execute. After one of his talks at Berkeley, he told Perelman about his biggest obstacle. As a space is smoothed under the Ricci flow, some regions deform into what mathematicians refer to as “singularities.” Some regions, called “necks,” become attenuated areas of infinite density. More troubling to Hamilton was a kind of singularity he called the “cigar.” If cigars formed, Hamilton worried, it might be impossible to achieve uniform geometry. Perelman realized that a paper he had written on Alexandrov spaces might help Hamilton prove Thurston’s conjecture—and the Poincaré—once Hamilton solved the cigar problem. “At some point, I asked Hamilton if he knew a certain collapsing result that I had proved but not published—which turned out to be very useful,” Perelman said. “Later, I realized that he didn’t understand what I was talking about.” Dan Stroock, of M.I.T., said, “Perelman may have learned stuff from Yau and Hamilton, but, at the time, they were not learning from him.”
By the end of his first year at Berkeley, Perelman had written several strikingly original papers. He was asked to give a lecture at the 1994 I.M.U. congress, in Zurich, and invited to apply for jobs at Stanford, Princeton, the Institute for Advanced Study, and the University of Tel Aviv. Like Yau, Perelman was a formidable problem solver. Instead of spending years constructing an intricate theoretical framework, or defining new areas of research, he focussed on obtaining particular results. According to Mikhail Gromov, a renowned Russian geometer who has collaborated with Perelman, he had been trying to overcome a technical difficulty relating to Alexandrov spaces and had apparently been stumped. “He couldn’t do it,” Gromov said. “It was hopeless.”
Perelman told us that he liked to work on several problems at once. At Berkeley, however, he found himself returning again and again to Hamilton’s Ricci-flow equation and the problem that Hamilton thought he could solve with it. Some of Perelman’s friends noticed that he was becoming more and more ascetic. Visitors from St. Petersburg who stayed in his apartment were struck by how sparsely furnished it was. Others worried that he seemed to want to reduce life to a set of rigid axioms. When a member of a hiring committee at Stanford asked him for a C.V. to include with requests for letters of recommendation, Perelman balked. “If they know my work, they don’t need my C.V.,” he said. “If they need my C.V., they don’t know my work.”
Ultimately, he received several job offers. But he declined them all, and in the summer of 1995 returned to St. Petersburg, to his old job at the Steklov Institute, where he was paid less than a hundred dollars a month. (He told a friend that he had saved enough money in the United States to live on for the rest of his life.) His father had moved to Israel two years earlier, and his younger sister was planning to join him there after she finished college. His mother, however, had decided to remain in St. Petersburg, and Perelman moved in with her. “I realize that in Russia I work better,” he told colleagues at the Steklov.
At twenty-nine, Perelman was firmly established as a mathematician and yet largely unburdened by professional responsibilities. He was free to pursue whatever problems he wanted to, and he knew that his work, should he choose to publish it, would be shown serious consideration. Yakov Eliashberg, a mathematician at Stanford who knew Perelman at Berkeley, thinks that Perelman returned to Russia in order to work on the Poincaré. “Why not?” Perelman said when we asked whether Eliashberg’s hunch was correct.
The Internet made it possible for Perelman to work alone while continuing to tap a common pool of knowledge. Perelman searched Hamilton’s papers for clues to his thinking and gave several seminars on his work. “He didn’t need any help,” Gromov said. “He likes to be alone. He reminds me of Newton—this obsession with an idea, working by yourself, the disregard for other people’s opinion. Newton was more obnoxious. Perelman is nicer, but very obsessed.”
In 1995, Hamilton published a paper in which he discussed a few of his ideas for completing a proof of the Poincaré. Reading the paper, Perelman realized that Hamilton had made no progress on overcoming his obstacles—the necks and the cigars. “I hadn’t seen any evidence of progress after early 1992,” Perelman told us. “Maybe he got stuck even earlier.” However, Perelman thought he saw a way around the impasse. In 1996, he wrote Hamilton a long letter outlining his notion, in the hope of collaborating. “He did not answer,” Perelman said. “So I decided to work alone.”
Yau had no idea that Hamilton’s work on the Poincaré had stalled. He was increasingly anxious about his own standing in the mathematics profession, particularly in China, where, he worried, a younger scholar could try to supplant him as Chern’s heir. More than a decade had passed since Yau had proved his last major result, though he continued to publish prolifically. “Yau wants to be the king of geometry,” Michael Anderson, a geometer at Stony Brook, said. “He believes that everything should issue from him, that he should have oversight. He doesn’t like people encroaching on his territory.” Determined to retain control over his field, Yau pushed his students to tackle big problems. At Harvard, he ran a notoriously tough seminar on differential geometry, which met for three hours at a time three times a week. Each student was assigned a recently published proof and asked to reconstruct it, fixing any errors and filling in gaps. Yau believed that a mathematician has an obligation to be explicit, and impressed on his students the importance of step-by-step rigor.
There are two ways to get credit for an original contribution in mathematics. The first is to produce an original proof. The second is to identify a significant gap in someone else’s proof and supply the missing chunk. However, only true mathematical gaps—missing or mistaken arguments—can be the basis for a claim of originality. Filling in gaps in exposition—shortcuts and abbreviations used to make a proof more efficient—does not count. When, in 1993, Andrew Wiles revealed that a gap had been found in his proof of Fermat’s last theorem, the problem became fair game for anyone, until, the following year, Wiles fixed the error. Most mathematicians would agree that, by contrast, if a proof’s implicit steps can be made explicit by an expert, then the gap is merely one of exposition, and the proof should be considered complete and correct.
Occasionally, the difference between a mathematical gap and a gap in exposition can be hard to discern. On at least one occasion, Yau and his students have seemed to confuse the two, making claims of originality that other mathematicians believe are unwarranted. In 1996, a young geometer at Berkeley named Alexander Givental had proved a mathematical conjecture about mirror symmetry, a concept that is fundamental to string theory. Though other mathematicians found Givental’s proof hard to follow, they were optimistic that he had solved the problem. As one geometer put it, “Nobody at the time said it was incomplete and incorrect.”
In the fall of 1997, Kefeng Liu, a former student of Yau’s who taught at Stanford, gave a talk at Harvard on mirror symmetry. According to two geometers in the audience, Liu proceeded to present a proof strikingly similar to Givental’s, describing it as a paper that he had co-authored with Yau and another student of Yau’s. “Liu mentioned Givental but only as one of a long list of people who had contributed to the field,” one of the geometers said. (Liu maintains that his proof was significantly different from Givental’s.)
Around the same time, Givental received an e-mail signed by Yau and his collaborators, explaining that they had found his arguments impossible to follow and his notation baffling, and had come up with a proof of their own. They praised Givental for his “brilliant idea” and wrote, “In the final version of our paper your important contribution will be acknowledged.”
A few weeks later, the paper, “Mirror Principle I,” appeared in the Asian Journal of Mathematics, which is co-edited by Yau. In it, Yau and his coauthors describe their result as “the first complete proof” of the mirror conjecture. They mention Givental’s work only in passing. “Unfortunately,” they write, his proof, “which has been read by many prominent experts, is incomplete.” However, they did not identify a specific mathematical gap.
Givental was taken aback. “I wanted to know what their objection was,” he told us. “Not to expose them or defend myself.” In March, 1998, he published a paper that included a three-page footnote in which he pointed out a number of similarities between Yau’s proof and his own. Several months later, a young mathematician at the University of Chicago who was asked by senior colleagues to investigate the dispute concluded that Givental’s proof was complete. Yau says that he had been working on the proof for years with his students and that they achieved their result independently of Givental. “We had our own ideas, and we wrote them up,” he says.
Around this time, Yau had his first serious conflict with Chern and the Chinese mathematical establishment. For years, Chern had been hoping to bring the I.M.U.’s congress to Beijing. According to several mathematicians who were active in the I.M.U. at the time, Yau made an eleventh-hour effort to have the congress take place in Hong Kong instead. But he failed to persuade a sufficient number of colleagues to go along with his proposal, and the I.M.U. ultimately decided to hold the 2002 congress in Beijing. (Yau denies that he tried to bring the congress to Hong Kong.) Among the delegates the I.M.U. appointed to a group that would be choosing speakers for the congress was Yau’s most successful student, Gang Tian, who had been at N.Y.U. with Perelman and was now a professor at M.I.T. The host committee in Beijing also asked Tian to give a plenary address.
Yau was caught by surprise. In March, 2000, he had published a survey of recent research in his field studded with glowing references to Tian and to their joint projects. He retaliated by organizing his first conference on string theory, which opened in Beijing a few days before the math congress began, in late August, 2002. He persuaded Stephen Hawking and several Nobel laureates to attend, and for days the Chinese newspapers were full of pictures of famous scientists. Yau even managed to arrange for his group to have an audience with Jiang Zemin. A mathematician who helped organize the math congress recalls that along the highway between Beijing and the airport there were “billboards with pictures of Stephen Hawking plastered everywhere.”
That summer, Yau wasn’t thinking much about the Poincaré. He had confidence in Hamilton, despite his slow pace. “Hamilton is a very good friend,” Yau told us in Beijing. “He is more than a friend. He is a hero. He is so original. We were working to finish our proof. Hamilton worked on it for twenty-five years. You work, you get tired. He probably got a little tired—and you want to take a rest.”
Then, on November 12, 2002, Yau received an e-mail message from a Russian mathematician whose name didn’t immediately register. “May I bring to your attention my paper,” the e-mail said.
On November 11th, Perelman had posted a thirty-nine-page paper entitled “The Entropy Formula for the Ricci Flow and Its Geometric Applications,” on arXiv.org, a Web site used by mathematicians to post preprints—articles awaiting publication in refereed journals. He then e-mailed an abstract of his paper to a dozen mathematicians in the United States—including Hamilton, Tian, and Yau—none of whom had heard from him for years. In the abstract, he explained that he had written “a sketch of an eclectic proof” of the geometrization conjecture.
Perelman had not mentioned the proof or shown it to anyone. “I didn’t have any friends with whom I could discuss this,” he said in St. Petersburg. “I didn’t want to discuss my work with someone I didn’t trust.” Andrew Wiles had also kept the fact that he was working on Fermat’s last theorem a secret, but he had had a colleague vet the proof before making it public. Perelman, by casually posting a proof on the Internet of one of the most famous problems in mathematics, was not just flouting academic convention but taking a considerable risk. If the proof was flawed, he would be publicly humiliated, and there would be no way to prevent another mathematician from fixing any errors and claiming victory. But Perelman said he was not particularly concerned. “My reasoning was: if I made an error and someone used my work to construct a correct proof I would be pleased,” he said. “I never set out to be the sole solver of the Poincaré.”
Gang Tian was in his office at M.I.T. when he received Perelman’s e-mail. He and Perelman had been friendly in 1992, when they were both at N.Y.U. and had attended the same weekly math seminar in Princeton. “I immediately realized its importance,” Tian said of Perelman’s paper. Tian began to read the paper and discuss it with colleagues, who were equally enthusiastic.
On November 19th, Vitali Kapovitch, a geometer, sent Perelman an e-mail:
Hi Grisha, Sorry to bother you but a lot of people are asking me about your preprint “The entropy formula for the Ricci . . .” Do I understand it correctly that while you cannot yet do all the steps in the Hamilton program you can do enough so that using some collapsing results you can prove geometrization? Vitali.
Perelman’s response, the next day, was terse: “That’s correct. Grisha.”
In fact, what Perelman had posted on the Internet was only the first installment of his proof. But it was sufficient for mathematicians to see that he had figured out how to solve the Poincaré. Barry Mazur, the Harvard mathematician, uses the image of a dented fender to describe Perelman’s achievement: “Suppose your car has a dented fender and you call a mechanic to ask how to smooth it out. The mechanic would have a hard time telling you what to do over the phone. You would have to bring the car into the garage for him to examine. Then he could tell you where to give it a few knocks. What Hamilton introduced and Perelman completed is a procedure that is independent of the particularities of the blemish. If you apply the Ricci flow to a 3-D space, it will begin to undent it and smooth it out. The mechanic would not need to even see the car—just apply the equation.” Perelman proved that the “cigars” that had troubled Hamilton could not actually occur, and he showed that the “neck” problem could be solved by performing an intricate sequence of mathematical surgeries: cutting out singularities and patching up the raw edges. “Now we have a procedure to smooth things and, at crucial points, control the breaks,” Mazur said.
Tian wrote to Perelman, asking him to lecture on his paper at M.I.T. Colleagues at Princeton and Stony Brook extended similar invitations. Perelman accepted them all and was booked for a month of lectures beginning in April, 2003. “Why not?” he told us with a shrug. Speaking of mathematicians generally, Fedor Nazarov, a mathematician at Michigan State University, said, “After you’ve solved a problem, you have a great urge to talk about it.”
Hamilton and Yau were stunned by Perelman’s announcement. “We felt that nobody else would be able to discover the solution,” Yau told us in Beijing. “But then, in 2002, Perelman said that he published something. He basically did a shortcut without doing all the detailed estimates that we did.” Moreover, Yau complained, Perelman’s proof “was written in such a messy way that we didn’t understand.”
Perelman’s April lecture tour was treated by mathematicians and by the press as a major event. Among the audience at his talk at Princeton were John Ball, Andrew Wiles, John Forbes Nash, Jr., who had proved the Riemannian embedding theorem, and John Conway, the inventor of the cellular automaton game Life. To the astonishment of many in the audience, Perelman said nothing about the Poincaré. “Here is a guy who proved a world-famous theorem and didn’t even mention it,” Frank Quinn, a mathematician at Virginia Tech, said. “He stated some key points and special properties, and then answered questions. He was establishing credibility. If he had beaten his chest and said, ‘I solved it,’ he would have got a huge amount of resistance.” He added, “People were expecting a strange sight. Perelman was much more normal than they expected.”
To Perelman’s disappointment, Hamilton did not attend that lecture or the next ones, at Stony Brook. “I’m a disciple of Hamilton’s, though I haven’t received his authorization,” Perelman told us. But John Morgan, at Columbia, where Hamilton now taught, was in the audience at Stony Brook, and after a lecture he invited Perelman to speak at Columbia. Perelman, hoping to see Hamilton, agreed. The lecture took place on a Saturday morning. Hamilton showed up late and asked no questions during either the long discussion session that followed the talk or the lunch after that. “I had the impression he had read only the first part of my paper,” Perelman said.
In the April 18, 2003, issue of Science, Yau was featured in an article about Perelman’s proof: “Many experts, although not all, seem convinced that Perelman has stubbed out the cigars and tamed the narrow necks. But they are less confident that he can control the number of surgeries. That could prove a fatal flaw, Yau warns, noting that many other attempted proofs of the Poincaré conjecture have stumbled over similar missing steps.” Proofs should be treated with skepticism until mathematicians have had a chance to review them thoroughly, Yau told us. Until then, he said, “it’s not math—it’s religion.”
By mid-July, Perelman had posted the final two installments of his proof on the Internet, and mathematicians had begun the work of formal explication, painstakingly retracing his steps. In the United States, at least two teams of experts had assigned themselves this task: Gang Tian (Yau’s rival) and John Morgan; and a pair of researchers at the University of Michigan. Both projects were supported by the Clay Institute, which planned to publish Tian and Morgan’s work as a book. The book, in addition to providing other mathematicians with a guide to Perelman’s logic, would allow him to be considered for the Clay Institute’s million-dollar prize for solving the Poincaré. (To be eligible, a proof must be published in a peer-reviewed venue and withstand two years of scrutiny by the mathematical community.)
On September 10, 2004, more than a year after Perelman returned to St. Petersburg, he received a long e-mail from Tian, who said that he had just attended a two-week workshop at Princeton devoted to Perelman’s proof. “I think that we have understood the whole paper,” Tian wrote. “It is all right.”
Perelman did not write back. As he explained to us, “I didn’t worry too much myself. This was a famous problem. Some people needed time to get accustomed to the fact that this is no longer a conjecture. I personally decided for myself that it was right for me to stay away from verification and not to participate in all these meetings. It is important for me that I don’t influence this process.”
In July of that year, the National Science Foundation had given nearly a million dollars in grants to Yau, Hamilton, and several students of Yau’s to study and apply Perelman’s “breakthrough.” An entire branch of mathematics had grown up around efforts to solve the Poincaré, and now that branch appeared at risk of becoming obsolete. Michael Freedman, who won a Fields for proving the Poincaré conjecture for the fourth dimension, told the Times that Perelman’s proof was a “small sorrow for this particular branch of topology.” Yuri Burago said, “It kills the field. After this is done, many mathematicians will move to other branches of mathematics.”
Five months later, Chern died, and Yau’s efforts to insure that he-—not Tian—was recognized as his successor turned vicious. “It’s all about their primacy in China and their leadership among the expatriate Chinese,” Joseph Kohn, a former chairman of the Prince-ton mathematics department, said. “Yau’s not jealous of Tian’s mathematics, but he’s jealous of his power back in China.”
Though Yau had not spent more than a few months at a time on mainland China since he was an infant, he was convinced that his status as the only Chinese Fields Medal winner should make him Chern’s successor. In a speech he gave at Zhejiang University, in Hangzhou, during the summer of 2004, Yau reminded his listeners of his Chinese roots. “When I stepped out from the airplane, I touched the soil of Beijing and felt great joy to be in my mother country,” he said. “I am proud to say that when I was awarded the Fields Medal in mathematics, I held no passport of any country and should certainly be considered Chinese.”
The following summer, Yau returned to China and, in a series of interviews with Chinese reporters, attacked Tian and the mathematicians at Peking University. In an article published in a Beijing science newspaper, which ran under the headline “SHING-TUNG YAU IS SLAMMING ACADEMIC CORRUPTION IN CHINA,” Yau called Tian “a complete mess.” He accused him of holding multiple professorships and of collecting a hundred and twenty-five thousand dollars for a few months’ work at a Chinese university, while students were living on a hundred dollars a month. He also charged Tian with shoddy scholarship and plagiarism, and with intimidating his graduate students into letting him add his name to their papers. “Since I promoted him all the way to his academic fame today, I should also take responsibility for his improper behavior,” Yau was quoted as saying to a reporter, explaining why he felt obliged to speak out.
In another interview, Yau described how the Fields committee had passed Tian over in 1988 and how he had lobbied on Tian’s behalf with various prize committees, including one at the National Science Foundation, which awarded Tian five hundred thousand dollars in 1994.
Tian was appalled by Yau’s attacks, but he felt that, as Yau’s former student, there was little he could do about them. “His accusations were baseless,” Tian told us. But, he added, “I have deep roots in Chinese culture. A teacher is a teacher. There is respect. It is very hard for me to think of anything to do.”
While Yau was in China, he visited Xi-Ping Zhu, a protégé of his who was now chairman of the mathematics department at Sun Yat-sen University. In the spring of 2003, after Perelman completed his lecture tour in the United States, Yau had recruited Zhu and another student, Huai-Dong Cao, a professor at Lehigh University, to undertake an explication of Perelman’s proof. Zhu and Cao had studied the Ricci flow under Yau, who considered Zhu, in particular, to be a mathematician of exceptional promise. “We have to figure out whether Perelman’s paper holds together,” Yau told them. Yau arranged for Zhu to spend the 2005-06 academic year at Harvard, where he gave a seminar on Perelman’s proof and continued to work on his paper with Cao.
On April 13th of this year, the thirty-one mathematicians on the editorial board of the Asian Journal of Mathematics received a brief e-mail from Yau and the journal’s co-editor informing them that they had three days to comment on a paper by Xi-Ping Zhu and Huai-Dong Cao titled “The Hamilton-Perelman Theory of Ricci Flow: The Poincaré and Geometrization Conjectures,” which Yau planned to publish in the journal. The e-mail did not include a copy of the paper, reports from referees, or an abstract. At least one board member asked to see the paper but was told that it was not available. On April 16th, Cao received a message from Yau telling him that the paper had been accepted by the A.J.M., and an abstract was posted on the journal’s Web site.
A month later, Yau had lunch in Cambridge with Jim Carlson, the president of the Clay Institute. He told Carlson that he wanted to trade a copy of Zhu and Cao’s paper for a copy of Tian and Morgan’s book manuscript. Yau told us he was worried that Tian would try to steal from Zhu and Cao’s work, and he wanted to give each party simultaneous access to what the other had written. “I had a lunch with Carlson to request to exchange both manuscripts to make sure that nobody can copy the other,” Yau said. Carlson demurred, explaining that the Clay Institute had not yet received Tian and Morgan’s complete manuscript.
By the end of the following week, the title of Zhu and Cao’s paper on the A.J.M.’s Web site had changed, to “A Complete Proof of the Poincaré and Geometrization Conjectures: Application of the Hamilton-Perelman Theory of the Ricci Flow.” The abstract had also been revised. A new sentence explained, “This proof should be considered as the crowning achievement of the Hamilton-Perelman theory of Ricci flow.”
Zhu and Cao’s paper was more than three hundred pages long and filled the A.J.M.’s entire June issue. The bulk of the paper is devoted to reconstructing many of Hamilton’s Ricci-flow results—including results that Perelman had made use of in his proof—and much of Perelman’s proof of the Poincaré. In their introduction, Zhu and Cao credit Perelman with having “brought in fresh new ideas to figure out important steps to overcome the main obstacles that remained in the program of Hamilton.” However, they write, they were obliged to “substitute several key arguments of Perelman by new approaches based on our study, because we were unable to comprehend these original arguments of Perelman which are essential to the completion of the geometrization program.” Mathematicians familiar with Perelman’s proof disputed the idea that Zhu and Cao had contributed significant new approaches to the Poincaré. “Perelman already did it and what he did was complete and correct,” John Morgan said. “I don’t see that they did anything different.”
By early June, Yau had begun to promote the proof publicly. On June 3rd, at his mathematics institute in Beijing, he held a press conference. The acting director of the mathematics institute, attempting to explain the relative contributions of the different mathematicians who had worked on the Poincaré, said, “Hamilton contributed over fifty per cent; the Russian, Perelman, about twenty-five per cent; and the Chinese, Yau, Zhu, and Cao et al., about thirty per cent.” (Evidently, simple addition can sometimes trip up even a mathematician.) Yau added, “Given the significance of the Poincaré, that Chinese mathematicians played a thirty-per-cent role is by no means easy. It is a very important contribution.”
On June 12th, the week before Yau’s conference on string theory opened in Beijing, the South China Morning Post reported, “Mainland mathematicians who helped crack a ‘millennium math problem’ will present the methodology and findings to physicist Stephen Hawking. . . . Yau Shing-Tung, who organized Professor Hawking’s visit and is also Professor Cao’s teacher, said yesterday he would present the findings to Professor Hawking because he believed the knowledge would help his research into the formation of black holes.”
On the morning of his lecture in Beijing, Yau told us, “We want our contribution understood. And this is also a strategy to encourage Zhu, who is in China and who has done really spectacular work. I mean, important work with a century-long problem, which will probably have another few century-long implications. If you can attach your name in any way, it is a contribution.”
E. T. Bell, the author of “Men of Mathematics,” a witty history of the discipline published in 1937, once lamented “the squabbles over priority which disfigure scientific history.” But in the days before e-mail, blogs, and Web sites, a certain decorum usually prevailed. In 1881, Poincaré, who was then at the University of Caen, had an altercation with a German mathematician in Leipzig named Felix Klein. Poincaré had published several papers in which he labelled certain functions “Fuchsian,” after another mathematician. Klein wrote to Poincaré, pointing out that he and others had done significant work on these functions, too. An exchange of polite letters between Leipzig and Caen ensued. Poincaré’s last word on the subject was a quote from Goethe’s “Faust”: “Name ist Schall und Rauch.” Loosely translated, that corresponds to Shakespeare’s “What’s in a name?”
This, essentially, is what Yau’s friends are asking themselves. “I find myself getting annoyed with Yau that he seems to feel the need for more kudos,” Dan Stroock, of M.I.T., said. “This is a guy who did magnificent things, for which he was magnificently rewarded. He won every prize to be won. I find it a little mean of him to seem to be trying to get a share of this as well.” Stroock pointed out that, twenty-five years ago, Yau was in a situation very similar to the one Perelman is in today. His most famous result, on Calabi-Yau manifolds, was hugely important for theoretical physics. “Calabi outlined a program,” Stroock said. “In a real sense, Yau was Calabi’s Perelman. Now he’s on the other side. He’s had no compunction at all in taking the lion’s share of credit for Calabi-Yau. And now he seems to be resenting Perelman getting credit for completing Hamilton’s program. I don’t know if the analogy has ever occurred to him.”
Mathematics, more than many other fields, depends on collaboration. Most problems require the insights of several mathematicians in order to be solved, and the profession has evolved a standard for crediting individual contributions that is as stringent as the rules governing math itself. As Perelman put it, “If everyone is honest, it is natural to share ideas.” Many mathematicians view Yau’s conduct over the Poincaré as a violation of this basic ethic, and worry about the damage it has caused the profession. “Politics, power, and control have no legitimate role in our community, and they threaten the integrity of our field,” Phillip Griffiths said.
Perelman likes to attend opera performances at the Mariinsky Theatre, in St. Petersburg. Sitting high up in the back of the house, he can’t make out the singers’ expressions or see the details of their costumes. But he cares only about the sound of their voices, and he says that the acoustics are better where he sits than anywhere else in the theatre. Perelman views the mathematics community—and much of the larger world—from a similar remove.
Before we arrived in St. Petersburg, on June 23rd, we had sent several messages to his e-mail address at the Steklov Institute, hoping to arrange a meeting, but he had not replied. We took a taxi to his apartment building and, reluctant to intrude on his privacy, left a book—a collection of John Nash’s papers—in his mailbox, along with a card saying that we would be sitting on a bench in a nearby playground the following afternoon. The next day, after Perelman failed to appear, we left a box of pearl tea and a note describing some of the questions we hoped to discuss with him. We repeated this ritual a third time. Finally, believing that Perelman was out of town, we pressed the buzzer for his apartment, hoping at least to speak with his mother. A woman answered and let us inside. Perelman met us in the dimly lit hallway of the apartment. It turned out that he had not checked his Steklov e-mail address for months, and had not looked in his mailbox all week. He had no idea who we were.
We arranged to meet at ten the following morning on Nevsky Prospekt. From there, Perelman, dressed in a sports coat and loafers, took us on a four-hour walking tour of the city, commenting on every building and vista. After that, we all went to a vocal competition at the St. Petersburg Conservatory, which lasted for five hours. Perelman repeatedly said that he had retired from the mathematics community and no longer considered himself a professional mathematician. He mentioned a dispute that he had had years earlier with a collaborator over how to credit the author of a particular proof, and said that he was dismayed by the discipline’s lax ethics. “It is not people who break ethical standards who are regarded as aliens,” he said. “It is people like me who are isolated.” We asked him whether he had read Cao and Zhu’s paper. “It is not clear to me what new contribution did they make,” he said. “Apparently, Zhu did not quite understand the argument and reworked it.” As for Yau, Perelman said, “I can’t say I’m outraged. Other people do worse. Of course, there are many mathematicians who are more or less honest. But almost all of them are conformists. They are more or less honest, but they tolerate those who are not honest.”
The prospect of being awarded a Fields Medal had forced him to make a complete break with his profession. “As long as I was not conspicuous, I had a choice,” Perelman explained. “Either to make some ugly thing”—a fuss about the math community’s lack of integrity—“or, if I didn’t do this kind of thing, to be treated as a pet. Now, when I become a very conspicuous person, I cannot stay a pet and say nothing. That is why I had to quit.” We asked Perelman whether, by refusing the Fields and withdrawing from his profession, he was eliminating any possibility of influencing the discipline. “I am not a politician!” he replied, angrily. Perelman would not say whether his objection to awards extended to the Clay Institute’s million-dollar prize. “I’m not going to decide whether to accept the prize until it is offered,” he said.
Mikhail Gromov, the Russian geometer, said that he understood Perelman’s logic: “To do great work, you have to have a pure mind. You can think only about the mathematics. Everything else is human weakness. Accepting prizes is showing weakness.” Others might view Perelman’s refusal to accept a Fields as arrogant, Gromov said, but his principles are admirable. “The ideal scientist does science and cares about nothing else,” he said. “He wants to live this ideal. Now, I don’t think he really lives on this ideal plane. But he wants to.”
订阅:
博文 (Atom)